First, let's write two expressions, letting x= the number of months which have elapsed:
Bill: 120 + 10x
Phil: 150 + 4x
If we set them equal to each other, then solve for x, that will be the number of months where their weights equal each other:
120+10x = 150 + 4x [starting equation]
-120 -4x -120 -4x [ subtract 120 from both sides, and 4x from both sides, to isolate the term with the variable]
<u>6x</u> = <u>30</u> [divide both sides by 5]
5 5
x=6. They will weigh the same in six months.
4y^2 + 16y
You distribute the 2y into the 2y+8
Answer:
<h2>c. 2</h2>
Step-by-step explanation:
![4^\frac{1}{3}\cdot4^\frac{1}{6}\\\\\text{use}\ a^n\cdot a^m=a^{n+m}\\\\=4^{\frac{1}{3}+\frac{1}{6}}=4^{\frac{1\cdot2}{3\cdot2}+\frac{1}{6}}=4^{\frac{2}{6}+\frac{1}{6}}=4^\frac{2+1}{6}=4^\frac{3}{6}=4^\frac{3:3}{6:3}=4^{\frac{1}{2}}\\\\\text{use}\ a^\frac{m}{n}=\sqrt[n]{a^m}\\\\=\sqrt[2]{4^1}=\sqrt4=2](https://tex.z-dn.net/?f=4%5E%5Cfrac%7B1%7D%7B3%7D%5Ccdot4%5E%5Cfrac%7B1%7D%7B6%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20a%5En%5Ccdot%20a%5Em%3Da%5E%7Bn%2Bm%7D%5C%5C%5C%5C%3D4%5E%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B6%7D%7D%3D4%5E%7B%5Cfrac%7B1%5Ccdot2%7D%7B3%5Ccdot2%7D%2B%5Cfrac%7B1%7D%7B6%7D%7D%3D4%5E%7B%5Cfrac%7B2%7D%7B6%7D%2B%5Cfrac%7B1%7D%7B6%7D%7D%3D4%5E%5Cfrac%7B2%2B1%7D%7B6%7D%3D4%5E%5Cfrac%7B3%7D%7B6%7D%3D4%5E%5Cfrac%7B3%3A3%7D%7B6%3A3%7D%3D4%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20a%5E%5Cfrac%7Bm%7D%7Bn%7D%3D%5Csqrt%5Bn%5D%7Ba%5Em%7D%5C%5C%5C%5C%3D%5Csqrt%5B2%5D%7B4%5E1%7D%3D%5Csqrt4%3D2)