Answer:
digestive would be stomach, excretion is the big and small intestines
Step-by-step explanation:
stomach digests food, your intestines process whatever is left till you excrete
Answer:
Option a)
Step-by-step explanation:
To get the vertical asymptotes of the function f(x) you must find the limit when x tends k of f(x). If this limit tends to infinity then x = k is a vertical asymptote of the function.
![\lim_{x\to\\2}\frac{x^3}{(x-2)^4} \\\\\\lim_{x\to\\2}\frac{2^3}{(2-2)^4}\\\\\lim_{x\to\\2}\frac{2^3}{(0)^4} = \infty](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5C%5C2%7D%5Cfrac%7Bx%5E3%7D%7B%28x-2%29%5E4%7D%20%5C%5C%5C%5C%5C%5Clim_%7Bx%5Cto%5C%5C2%7D%5Cfrac%7B2%5E3%7D%7B%282-2%29%5E4%7D%5C%5C%5C%5C%5Clim_%7Bx%5Cto%5C%5C2%7D%5Cfrac%7B2%5E3%7D%7B%280%29%5E4%7D%20%3D%20%5Cinfty)
Then. x = 2 it's a vertical asintota.
To obtain the horizontal asymptote of the function take the following limit:
![\lim_{x \to \infty}\frac{x^3}{(x-2)^4}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bx%5E3%7D%7B%28x-2%29%5E4%7D)
if
then y = b is horizontal asymptote
Then:
![\lim_{x \to \infty}\frac{x^3}{(x-2)^4} \\\\\\lim_{x \to \infty}\frac{1}{(\infty)} = 0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bx%5E3%7D%7B%28x-2%29%5E4%7D%20%5C%5C%5C%5C%5C%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%5Cfrac%7B1%7D%7B%28%5Cinfty%29%7D%20%3D%200)
Therefore y = 0 is a horizontal asymptote of f(x).
Then the correct answer is the option a) x = 2, y = 0