Metallic solids or metallic structures experience metallic bonds which are the forces of attractions between the sea of electrons and the nucleus of the metallic atoms. They share a network of highly delocalized electrons.
I therefore think that the packing efficiency decreases as the number of nearest neighbors decreases.
Answer:
A carbohydrate is a compound composed of molecules of carbon (C), hydrogen (H), and oxygen (O) such that its general chemical formula is
.
Biochemical functions of carbohydrates: Carbohydrates provide Stored Energy, Carbohydrates help to preserve Muscle and promote digestive health and Carbohydrates build macromolecules
Explanation:
A carbohydrate is a compound composed of molecules of carbon (C), hydrogen (H), and oxygen (O) such that its general chemical formula is
.
Biochemical functions of carbohydrates:
1. Carbohydrates provide Stored Energy.
2. Carbohydrates help to preserve Muscle and promote digestive health.
3. Carbohydrates build macromolecules
Answer: A 0.20 M solution of HCl with a volume of 15.0 mL is exactly neutralized by the 0.10 M solution of NaOH with 3 mL volume.
Explanation:
Given:
= 0.20 M,
= 15.0 mL
= 0.10 M,
= ?
Formula used is as follows.

Substitute the values into above formula s follows.
![M_{1}V_{1} = M_{2}V_{2}\\0.20 M ]times 15.0 mL = 0.10 M ]times V_{2}\\V_{2} = 30 mL](https://tex.z-dn.net/?f=M_%7B1%7DV_%7B1%7D%20%3D%20M_%7B2%7DV_%7B2%7D%5C%5C0.20%20M%20%5Dtimes%2015.0%20mL%20%3D%200.10%20M%20%5Dtimes%20V_%7B2%7D%5C%5CV_%7B2%7D%20%3D%2030%20mL)
Thus, we can conclude that a 0.20 M solution of HCl with a volume of 15.0 mL is exactly neutralized by the 0.10 M solution of NaOH with 3 mL volume.
Answer:
option (B) is correct
Explanation:
In case of nuclear reactors first the nuclear energy is emitted due to the nuclear fission of heavy elements.
This nuclear energy is emitted in the form of heat energy.
This heat energy is used to rotate the turbines, that means it is converted in the form of mechanical energy and then finally this mechanical energy is converted into electrical energy.