Answer:
Option no 3
Explanation:
Metallic elements aren't usually crumbled in normal air pressure and conditions.
Answer:
i think that the wet cloth will keep the coolness inside the water instead of evaporating and getting warm
Explanation:
Answer:
. B. The boxes must minimize thermal energy transfer to prevent thermal energy from transferring into the boxes.
Explanation:
If a box is to remain cool, energy transfer into the box must be minimized and energy transfer out of the box must be maximized.
This implies that only a minimal amount of thermal energy can transfer into the box while the box looses heat rapidly. If a box is this designed, it is likely to remain cool.
Answer:
The manufacturing processes for liquefied petroleum gas are designed so that the majority, if not all, of the sulfur compounds are removed. The total sulfur level is therefore considerably lower than for other crude oil-based fuels and a maximum limit for sulfur content helps to define the product more completely. The sulfur compounds that are mainly responsible for corrosion are hydrogen sulfide, carbonyl sulfide and, sometimes, elemental sulfur. Hydrogen sulfide and mercaptans have distinctive unpleasant odors. A control of the total sulfur content, hydrogen sulfide and mercaptans ensures that the product is not corrosive or nauseating. Stipulating a satisfactory copper strip test further ensures the control of the corrosion.
<h3>
Answer:</h3>
89.88° C
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of gold cylinder as 75 g
- specific heat of gold is 0.129 J/g°C
- Initial temperature of gold cylinder is 65°C
- Mass of water is 500 g
- Initial temperature of water is 90 °C
We are required to calculate the final temperature;
- We know that Quantity of heat is given by the product of mass, specific heat capacity and change in temperature.
<h3>Step 1: Calculate the quantity of heat absorbed by the Gold cylinder</h3>
Assuming the final temperature is X° C
Then; ΔT = (X-65)°C
Therefore;
Q = 75 g × 0.129 J/g°C × (X-65)°C
= 9.675X - 628.875 Joules
<h3>Step 2: Calculate the quantity of heat released by water</h3>
Taking the final temperature as X° C
Change in temperature, ΔT = (90 - X)° C
Specific heat capacity of water is 4.184 J/g°C
Therefore;
Q = 500 g × 4.184 J/g°C × (90 - X)° C
= 188,280 -2092X joules
<h3>Step 3: Calculate the final temperature, X°C</h3>
we know that the heat gained by gold cylinder is equal to the heat released by water.
9.675X - 628.875 Joules = 188,280 -2092X joules
2101.675 X = 188908.875
X = 89.88° C
Thus, the final temperature is 89.88° C