Answer:
The answer is B, -5 is a rational number and integer! :)
Step-by-step explanation:
First find the total payments
Total paid
200×30=6,000 (this is the future value)
Second use the formula of the future value of annuity ordinary to find the monthly payment.
The formula is
Fv=pmt [(1+r/k)^(n)-1)÷(r/k)]
We need to solve for pmt
PMT=Fv÷[(1+r/k)^(n)-1)÷(r/k)]
PMT monthly payment?
Fv future value 6000
R interest rate 0.09
K compounded monthly 12
N=kt=12×(30months/12months)=30
PMT=6000÷(((1+0.09÷12)^(30)
−1)÷(0.09÷12))
=179.09 (this is the monthly payment)
Now use the formula of the present value of annuity ordinary to find the amount of his loan.
The formula is
Pv=pmt [(1-(1+r/k)^(-n))÷(r/k)]
Pv present value or the amount of his loan?
PMT monthly payment 179.09
R interest rate 0.09
N 30
K compounded monthly 12
Pv=179.09×((1−(1+0.09÷12)^(
−30))÷(0.09÷12))
=4,795.15
The answer is 4795.15
Let X be the number of boys in n selected births. Let p be the probability of getting baby boy on selected birth.
Here n=10. Also the male and female births are equally likely it means chance of baby boy or girl is 1/2
P(Boy) = P(girl) =0.5
p =0.5
From given information we have n =10 fixed number of trials, p is probability of success which is constant for each trial . And each trial is independent of each other.
So X follows Binomial distribution with n=10 and p=0.5
The probability function of Binomial distribution for k number of success, x=k is given as
P(X=k) =
We have to find probability of getting 8 boys in n=10 births
P(X=8) =
= 45 * 0.0039 * 0.25
P(X = 8) = 0.0438
The probability of getting exactly 8 boys in selected 10 births is 0.044