Answer:
8/15
Step-by-step explanation:
4/5 x 2/3 = 8/15
or
4/5 x 2/3 = 0.5333
hope this helps ^w^
Answer:
4(x-5)=4x-20
4x-20=4x-20
+<u>20 +20</u>
4x=4x
<u>-4x </u>-4x therefore there's infinite solutions
0=0
let's first off take a peek at those values.
let's say the point with those coordinates is point C, so C is 3/10 of the way from A to B.
meaning, we take the segment AB and cut it in 10 equal pieces, AC takes 3 pieces, and CB takes 7 pieces, namely AC and CB are at a 3:7 ratio.
![\bf ~~~~~~~~~~~~\textit{internal division of a line segment} \\\\\\ A(-4,-8)\qquad B(11,7)\qquad \qquad \stackrel{\textit{ratio from A to B}}{3:7} \\\\\\ \cfrac{A\underline{C}}{\underline{C} B} = \cfrac{3}{7}\implies \cfrac{A}{B} = \cfrac{3}{7}\implies 7A=3B\implies 7(-4,-8)=3(11,7)\\\\[-0.35em] ~\dotfill\\\\ C=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%7D%0A%5C%5C%5C%5C%5C%5C%0AA%28-4%2C-8%29%5Cqquad%20B%2811%2C7%29%5Cqquad%0A%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20A%20to%20B%7D%7D%7B3%3A7%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7BA%5Cunderline%7BC%7D%7D%7B%5Cunderline%7BC%7D%20B%7D%20%3D%20%5Ccfrac%7B3%7D%7B7%7D%5Cimplies%20%5Ccfrac%7BA%7D%7BB%7D%20%3D%20%5Ccfrac%7B3%7D%7B7%7D%5Cimplies%207A%3D3B%5Cimplies%207%28-4%2C-8%29%3D3%2811%2C7%29%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%5C%5C%5C%5C%0AC%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill)
![\bf C=\left(\cfrac{(7\cdot -4)+(3\cdot 11)}{3+7}\quad ,\quad \cfrac{(7\cdot -8)+(3\cdot 7)}{3+7}\right) \\\\\\ C=\left( \cfrac{-28+33}{10}~~,~~\cfrac{-56+21}{10} \right)\implies C=\left( \cfrac{5}{10}~~,~~\cfrac{-35}{10} \right) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill C=\left( \frac{1}{2}~,~-\frac{7}{2} \right)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20C%3D%5Cleft%28%5Ccfrac%7B%287%5Ccdot%20-4%29%2B%283%5Ccdot%2011%29%7D%7B3%2B7%7D%5Cquad%20%2C%5Cquad%20%5Ccfrac%7B%287%5Ccdot%20-8%29%2B%283%5Ccdot%207%29%7D%7B3%2B7%7D%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0AC%3D%5Cleft%28%20%5Ccfrac%7B-28%2B33%7D%7B10%7D~~%2C~~%5Ccfrac%7B-56%2B21%7D%7B10%7D%20%5Cright%29%5Cimplies%20C%3D%5Cleft%28%20%5Ccfrac%7B5%7D%7B10%7D~~%2C~~%5Ccfrac%7B-35%7D%7B10%7D%20%5Cright%29%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A~%5Chfill%20C%3D%5Cleft%28%20%5Cfrac%7B1%7D%7B2%7D~%2C~-%5Cfrac%7B7%7D%7B2%7D%20%5Cright%29~%5Chfill)
Real-world situations can be represented by an equation when something is strictly equal to another thing (ex. when the price of a stick of gum is the price as two erasers) Real-world situations can be represented by inequalities when something is not defitively equal to another (ex. say that Sam wanted to buy snacks and water for her soccer team, she can spend no more than $20, here you would use an inequality symbol)
It might be a bit complicated to understand my wording in its entirety, but I hope that I helped!!
The proportion would be 95% of all random samples of customers will show that 88# of orders arrive on time