Answer:
a
![P(X \ge 1) = 0.509](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%200.509%20)
b
![P(X \ge 1) = 0.6807](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D%200.6807%20)
Step-by-step explanation:
From the question we are told that
The number of students in the class is N = 20 (This is the population )
The number of student that will cheat is k = 3
The number of students that he is focused on is n = 4
Generally the probability distribution that defines this question is the Hyper geometrically distributed because four students are focused on without replacing them in the class (i.e in the generally population) and population contains exactly three student that will cheat.
Generally probability mass function is mathematically represented as
![P(X = x) = \frac{^{k}C_x * ^{N-k}C_{n-x}}{^{N}C_n}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%20%5Cfrac%7B%5E%7Bk%7DC_x%20%2A%20%5E%7BN-k%7DC_%7Bn-x%7D%7D%7B%5E%7BN%7DC_n%7D)
Here C stands for combination , hence we will be making use of the combination functionality in our calculators
Generally the that he finds at least one of the students cheating when he focus his attention on four randomly chosen students during the exam is mathematically represented as
![P(X \ge 1) = 1 - P(X \le 0)](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20P%28X%20%5Cle%200%29)
Here
![P(X \le 0) = \frac{ ^{3} C_0 * ^{20 - 3} C_{4- 0}}{ ^{20}C_4}](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%20%5Cfrac%7B%20%5E%7B3%7D%20C_0%20%2A%20%20%5E%7B20%20-%203%7D%20C_%7B4-%200%7D%7D%7B%20%5E%7B20%7DC_4%7D)
![P(X \le 0) = \frac{ ^{3} C_0 * ^{17} C_{4}}{ ^{20}C_4}](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%20%5Cfrac%7B%20%5E%7B3%7D%20C_0%20%2A%20%20%5E%7B17%7D%20C_%7B4%7D%7D%7B%20%5E%7B20%7DC_4%7D)
![P(X \le 0) = \frac{ 1 * 2380}{ 4845}](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%20%5Cfrac%7B%201%20%2A%20%202380%7D%7B%204845%7D)
![P(X \le 0) = 0.491](https://tex.z-dn.net/?f=P%28X%20%5Cle%200%29%20%3D%20%200.491)
Hence
![P(X \ge 1) = 1 - 0.491](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%200.491)
![P(X \ge 1) = 0.509](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%200.509%20)
Generally the that he finds at least one of the students cheating when he focus his attention on six randomly chosen students during the exam is mathematically represented as
![P(X \ge 1) = 1 - P(X \le 0)](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20P%28X%20%5Cle%200%29)
![P(X \ge 1) =1- [ \frac{^{k}C_x * ^{N-k}C_{n-x}}{^{N}C_n}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7Bk%7DC_x%20%2A%20%5E%7BN-k%7DC_%7Bn-x%7D%7D%7B%5E%7BN%7DC_n%7D%5D%20)
Here n = 6
So
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{20 -3}C_{6-0}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B20%20-3%7DC_%7B6-0%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{17}C_{6}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B17%7DC_%7B6%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{1 * 12376}{38760}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B1%20%20%2A%20%2012376%7D%7B38760%7D%5D%20)
![P(X \ge 1) =1- 0.3193](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%200.3193%20)
![P(X \ge 1) = 0.6807](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D%200.6807%20)
Im sure its <span>For any x-value, the y-value of the exponential function is always smaller.</span>
Answer:
2. Pasture Farm : 2 cows for every 9 chickens & 4. C & C Farm: 3 cows for
every 8 chickens.
* Please let me know if this helped you or tell me if one of my answers are wrong .
Answer:
"490 grams" would be the correct solution.
Step-by-step explanation:
The given values are:
Half time,
T = 35 days
Total time,
t = 105 days
As we know,
⇒ ![A=A_o(\frac{1}{2} )^{\frac{t}{T} }](https://tex.z-dn.net/?f=A%3DA_o%28%5Cfrac%7B1%7D%7B2%7D%20%29%5E%7B%5Cfrac%7Bt%7D%7BT%7D%20%7D)
On substituting the values, we get
⇒ ![=3920\times (\frac{1}{2})^{\frac{105}{35} }](https://tex.z-dn.net/?f=%3D3920%5Ctimes%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B%5Cfrac%7B105%7D%7B35%7D%20%7D)
⇒ ![=3920\times (0.5)^3](https://tex.z-dn.net/?f=%3D3920%5Ctimes%20%280.5%29%5E3)
⇒ ![=3920\times 0.125](https://tex.z-dn.net/?f=%3D3920%5Ctimes%200.125)
⇒ ![=490 \ grams](https://tex.z-dn.net/?f=%3D490%20%5C%20grams)