Answer:
E
Step-by-step explanation:
Solution:-
- We are to investigate the confidence interval of 95% for the population mean of walking times from Fretwell Building to the college of education building.
- The survey team took a sample of size n = 24 students and obtained the following results:
Sample mean ( x^ ) = 12.3 mins
Sample standard deviation ( s ) = 3.2 mins
- The sample taken was random and independent. We can assume normality of the sample.
- First we compute the critical value for the statistics.
- The z-distribution is a function of two inputs as follows:
- Significance Level ( α / 2 ) = ( 1 - CI ) / 2 = 0.05/2 = 0.025
Compute: z-critical = z_0.025 = +/- 1.96
- The confidence interval for the population mean ( u ) of walking times is given below:
[ x^ - z-critical*s / √n , x^ + z-critical*s / √n ]
Answer: [ 12.3 - 1.96*3.2 / √24 , 12.3 + 1.96*3.2 / √24 ]
Answer:
Step-by-step explanation:
Since 500 is the area, and 20 is the length, divide 500 by 20. Your answer is a decimal. (0.04) therefore, you have to make it into a whole number. So move the decimal to the right two times. So 4 is your height.
Answer:
x° = 79°
z° = 101°
Step-by-step explanation:
Answer:
{-8, -7, 0, 6, 9}
Step-by-step explanation:
1. The range of a relation is the set of its possible output values, also known as the y-values of a function.
2. Let's find the y-coordinate of each point.
3. Now, let's order them (from least to greatest) to get the range.
- {-8, -7, 0, 6, 9}
Therefore, the range of this relation is {-8, -7, 0, 6, 9}.