1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
3 years ago
6

Choose all the numbers that 135 is divisible by.

Mathematics
2 answers:
Andre45 [30]3 years ago
4 0

Answer:

1, 3, 5, 9, 15, 27, 45, 135.

Step-by-step explanation:

garri49 [273]3 years ago
4 0

Answer:

The factors of 135 are 1, 3, 5, 9, 15, 27, 45, 135

You might be interested in
Solving a motion problem using a system of equations
kvasek [131]
Step 1 understand the problem make sure that you read the questions carefully several times Step 2 devise a plan Translate step 3 carry out the plan solve this is a system of linear equations with 3 variables
8 0
2 years ago
A circle has a radius of three. An arc in the circle has essential angle of 20°. What is the length of the arc
Nataliya [291]

Answer:

1.048

Step-by-step explanation:

<em>(thiter \div 360) \times \pi \times diameter</em>

  1. <em>(20 \div 360) \times \pi \times 6</em>
  2. <em>After</em><em> </em><em>calculati</em><em>ng</em><em> </em><em>the</em><em> </em><em>answer</em><em> is</em><em> </em><em>1</em><em>.</em><em>0</em><em>4</em><em>8</em>
6 0
3 years ago
Solution for dy/dx+xsin 2 y=x^3 cos^2y
vichka [17]
Rearrange the ODE as

\dfrac{\mathrm dy}{\mathrm dx}+x\sin2y=x^3\cos^2y
\sec^2y\dfrac{\mathrm dy}{\mathrm dx}+x\sin2y\sec^2y=x^3

Take u=\tan y, so that \dfrac{\mathrm du}{\mathrm dx}=\sec^2y\dfrac{\mathrm dy}{\mathrm dx}.

Supposing that |y|, we have \tan^{-1}u=y, from which it follows that

\sin2y=2\sin y\cos y=2\dfrac u{\sqrt{u^2+1}}\dfrac1{\sqrt{u^2+1}}=\dfrac{2u}{u^2+1}
\sec^2y=1+\tan^2y=1+u^2

So we can write the ODE as

\dfrac{\mathrm du}{\mathrm dx}+2xu=x^3

which is linear in u. Multiplying both sides by e^{x^2}, we have

e^{x^2}\dfrac{\mathrm du}{\mathrm dx}+2xe^{x^2}u=x^3e^{x^2}
\dfrac{\mathrm d}{\mathrm dx}\bigg[e^{x^2}u\bigg]=x^3e^{x^2}

Integrate both sides with respect to x:

\displaystyle\int\frac{\mathrm d}{\mathrm dx}\bigg[e^{x^2}u\bigg]\,\mathrm dx=\int x^3e^{x^2}\,\mathrm dx
e^{x^2}u=\displaystyle\int x^3e^{x^2}\,\mathrm dx

Substitute t=x^2, so that \mathrm dt=2x\,\mathrm dx. Then

\displaystyle\int x^3e^{x^2}\,\mathrm dx=\frac12\int 2xx^2e^{x^2}\,\mathrm dx=\frac12\int te^t\,\mathrm dt

Integrate the right hand side by parts using

f=t\implies\mathrm df=\mathrm dt
\mathrm dg=e^t\,\mathrm dt\implies g=e^t
\displaystyle\frac12\int te^t\,\mathrm dt=\frac12\left(te^t-\int e^t\,\mathrm dt\right)

You should end up with

e^{x^2}u=\dfrac12e^{x^2}(x^2-1)+C
u=\dfrac{x^2-1}2+Ce^{-x^2}
\tan y=\dfrac{x^2-1}2+Ce^{-x^2}

and provided that we restrict |y|, we can write

y=\tan^{-1}\left(\dfrac{x^2-1}2+Ce^{-x^2}\right)
5 0
3 years ago
The equation of a curve is y=f(x). the curve goes through the points (1,3) and (3,7). f'(x) = 4x+p, where p is a number.
Nimfa-mama [501]
f'(x)=4x+p\\&#10;f(x)=2x^2+px+C\\\\&#10;3=2\cdot1^2+p\cdot1+C\\&#10;7=2\cdot3^2+p\cdot3+C\\\\&#10;3=2+p+C\\&#10;7=18+3p+C\\\\&#10;C=1-p\\&#10;3p=-11-C\\\\&#10;3p=-11-(1-p)\\&#10;3p=-11-1+p\\&#10;2p=-12\\&#10;p=-6\\\\&#10;C=1-(-6)\\&#10;C=7\\\\&#10;y=2x^2-6x+7&#10;
5 0
3 years ago
Get moneyy. Answer this.
Alexxandr [17]
It should be a 80 degrees.
5 0
2 years ago
Read 2 more answers
Other questions:
  • What set of reflections would carry rectangle ABCD onto itself?
    7·1 answer
  • one month charlie rented 2 movies 3 video games for a total of $21. The next month he rented 4 movies and 8 video games for a to
    14·1 answer
  • Two integers a and b, have a product of 24. What's the least they can be?
    13·1 answer
  • I need help please!!!
    7·2 answers
  • Help with math, type letter​
    12·2 answers
  • Which of the following is a true statement?
    13·2 answers
  • PLSSSSSSSSS HELPPPP!!!!!!!! PLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
    15·1 answer
  • 10°<br> 55°<br> x х<br> Solve for y in the figure above.
    8·1 answer
  • I need an answer quick I'll give you a crown if can.
    7·2 answers
  • Yea yea you know i need help my brains tiny thank you for everything and everyone helping
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!