Top triangle((6X9)/2)=27square 7x9=63 parallelogram 7X9=69 right triangle ((7X6)/2)=21 so 27+63+63+21=174
Answer:
3y+4
Step-by-step explanation:
9y-6y=3y
Answer:
it is
Step-by-step explanation:
because it addition it doesn't matter which way you put it
Answers:
x = 100
y = 25
==============================================================
Explanation:
Angle y and the 25 degree angle are corresponding angle. Because the lines are parallel, this means that y = 25
Check out the attached image. Using a red pen, I extended one of the lines to form a triangle. From the alternate interior angle theorem, we know that one of the angles of the triangle is 75 degrees (alternate interior angles are congruent). Again this stems from the fact that the lines are parallel.
I've also introduced the variable z to help find x. The angles x and z add up to 180 degrees since they form a straight line. So we need to find z before we can find x.
The triangle's angles 25, 75, z add up to 180. Let's solve for z
25+75+z = 180
100+z = 180
z = 180-100
z = 80
Use this to find x
x+z = 180
x+80 = 180
x = 180-80
x = 100
Answer:
Step-by-step explanation:
Given a function
, we called the rate of change to the number that represents the increase or decrease that the function experiences when increasing the independent variable from one value "
" to another "
".
The rate of change of
between
and
can be calculated as follows:

For:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

And for:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

<em>Translation:</em>
Dada una función
, llamábamos tasa de variación al número que representa el aumento o disminución que experimenta la función al aumentar la variable independiente de un valor "
" a otro "
".
La tasa de variación de
entre
y
, puede ser calculada de la siguiente forma:

Para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Y para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:
