Number of child tickets bought is 20
<h3><u>
Solution:</u></h3>
Given that It cost 5 dollars for a child ticket and 8 dollars for a adult ticket
cost of each child ticket = 5 dollars
cost of each adult ticket = 8 dollars
Let "c" be the number of child tickets bought
Let "a" be the number of adult tickets bought
Total tickets sold were 110 bringing in 820 dollars
<em>Number of child tickets bought + number of adult tickets bought = 110</em>
c + a = 110 ----- eqn 1
<em><u>Also we can frame a equation as:</u></em>
Number of child tickets bought x cost of each child ticket + number of adult tickets bought x cost of each adult ticket = 820

5c + 8a = 820 -------- eqn 2
Let us solve eqn 1 and eqn 2 to find values of "c" and "a"
From eqn 1,
a = 110 - c ------ eqn 3
Substitute eqn 3 in eqn 2
5c + 8(110 - c) = 820
5c + 880 - 8c = 820
-3c = - 60
c = 20
Therefore from eqn 3,
a = 110 - 20 = 90
a = 90
Therefore number of child tickets bought is 20
Answer:
a = 21
b = 63
c = 42√3
d = 21√3
Step-by-step explanation:
The sides of a 30°-60°-90° triangle have the ratios 1 : √3 : 2. The given side (42) is the longest side of the smallest triangle, and the shortest side of the largest triangle.
That means the other sides of the smallest triangle will be ...
a = 42/2 = 21
a+b = 2(42) = 84
b = (a+b) -a = 84 -21 = 63
d = 21√3 . . . . middle-length side of the smallest triangle
c = 42√3 . . . . middle-length side of the largest triangle
The values of the variables are ...
- a = 21
- b = 63
- c = 42√3
- d = 21√3
<u>Answer:</u>
- The solution of the inequality is x < -2.
<u>Step-by-step explanation:</u>
<u>Let's simplify the inequality first.</u>
- => -4x < 8
- => -4x/4 < 8/4
- => -x < 2
- => x < -2
Hence, <u>the solution of the inequality is</u><u> x < -2.</u>
Hoped this helped.

Rewrite in standard form using (h,k) to find the vertex.
(3,4) is the answer.
Answer: t = 10
Step-by-step explanation:m
Given that; n₁ = 10, n₂ = 10
ж₁ = 50, ж₂ = 30
Sˣ₁ = 20, Sˣ₂ = 20
Now using TEST STATISTICS
t = (ж₁ - ж₂) / √ ( Sˣ₁/n₁ + Sˣ₂/n₂ )
so we substitute our figures
t = ( 50 - 30 ) / √ ( 20/10 + 20/10 )
t = 20 / √4
t = 10