Step-by-step explanation:
- Since m∠ACM = 90°, then by angle addition, m∠ACP + m∠PCM = 90°.
- Since CP⊥ AM, then by definition of perpendicular, m∠APC = 90°. Since angles of a triangle add up to 180°, that means m∠PAC + m∠ACP = 90°.
- By substitution, m∠PCM = m∠PAC.
- Since m∠PCM + m∠CMP = 90°, then by substitution, m∠CMP = m∠PAC.
- Therefore, by AAA, △ACP and △CMP are similar.
Having proven that the triangles are similar, we can write the proportion:
AP / CP = CP / MP
9 / CP = CP / 16
CP² = 144
CP = 12
Now, we can simply use Pythagorean theorem to find the other sides.
AC² = AP² + CP²
AC² = 9² + 12²
AC = 15
CM² = CP² + PM²
CM² = 12² + 16²
CM = 20
Please be a little specific.
Answer:
x=3,5
Explanation:
x2−8x+15=0
Try to express the terms of the equation in square form.
Adding 16 both sides of the equation,
(x2−2⋅x⋅4+42)+15=16
or,(x−4)2+15−16=0
or,(x−4)2−1=0
or,(x−4)2−12=0
This is the a2−b2=(a+b)(a−b)form.
(x−4+1)(x−4−1)=0
or,(x−3)(x−5)=0
Now, equate both the terms to zero since both of them when multiplied, give zero.
Either,
x−3=0
∴x=3
Or,
x−5=0
∴x=5
Ans:x=3,5 Hope this helpsXD...!!
Answer:
<u><em>F(x)= 5*[ + (a*b)* + a*b*x + C.</em></u>
Step-by-step explanation:
<u><em>First step we aplicate distributive property to the function.</em></u>
<u><em>5*(x+a)*(x+b)= 5*[+x*b+a*x+a*b]</em></u>
<u><em>5*[+x*(b+a)+a*b]= f(x), where a, b are constant and a≠b</em></u>
<u><em>integrating we find ⇒∫f(x)*dx= F(x) + C, where C= integration´s constant</em></u>
<u><em>∫^5*[+x*(a+b)+a*b]*dx, apply integral´s property</em></u>
<u><em>5*[∫dx+∫(a*b)*x*dx + ∫a*b*dx], resolving the integrals </em></u>
<u><em>5*[ + (a*b)* + a*b*x</em></u>
<u><em>Finally we can write the function F(x)</em></u>
<u><em>F(x)= 5*[ + (a*b)* + a*b*x ]+ C.</em></u>