The figure is a rectangle so the formula is area = length *width
So the area is 432
First understand that this is a linear graph. Find 2 points on the graph. We can use (0,1) and (3,-3).
Look at how much the x increases, in this case the x value increases by 0+3, so 3.
Then see how much the y value increases (make sure to evaluate them in the same order) 1 + (-3) = -2.
So you know that the y value decreases by 2 units for every 3 unit increase in x. Therefore the slope is y=(-2/3)x
Then figure out what you add to the end. The y intercept is (0,1), so add 1 to the end of y=(-2/3)x to move it up.
Your resulting eq is y=(-2/3)x+1
Answer:
Well, let's assume that "cups" = 3 cups of flour.
Step-by-step explanation:
First, multiply 3x36.
If for some reason this is incorrect, try 2 cups instead of 3. Both are reasonable measurements when it comes to baking.
Start with 180.
<span>Is 180 divisible by 2? Yes, so write "2" as one of the prime factors, and then work with the quotient, 90. </span>
<span>Is 90 divisible by 2? Yes, so write "2" (again) as another prime factor, then work with the quotient, 45. </span>
<span>Is 45 divisible by 2? No, so try a bigger divisor. </span>
<span>Is 45 divisible by 3? Yes, so write "3" as a prime factor, then work with the quotient, 15 </span>
<span>Is 15 divisible by 3? [Note: no need to revert to "2", because we've already divided out all the 2's] Yes, so write "3" (again) as a prime factor, then work with the quotient, 5. </span>
<span>Is 5 divisible by 3? No, so try a bigger divisor. </span>
Is 5 divisible by 4? No, so try a bigger divisor (actually, we know it can't be divisible by 4 becase it's not divisible by 2)
<span>Is 5 divisible by 5? Yes, so write "5" as a prime factor, then work with the quotient, 1 </span>
<span>Once you end up with a quotient of "1" you're done. </span>
<span>In this case, you should have written down, "2 * 2 * 3 * 3 * 5"</span>
Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
=
A = ?
a=6.9
C=90
c=13.2
=
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
=
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m