5(x - 3) +6 = 5x - 9 has infinitely many solutions
<h3><u>Solution:</u></h3>
Given equation is 5(x - 3) +6 = 5x - 9
We have to find whether the given equation has one, zero, or infinitely many solutions
Let us solve the given equation
5(x - 3) + 6 = 5x - 9
Let us use BODMAS rule to solve the given equation
According to Bodmas rule, if an expression contains brackets ((), {}, []) we have to first solve or simplify the bracket followed by of (powers and roots etc.), then division, multiplication, addition and subtraction from left to right
So let us first solve for brackets in given equation
5x - 15 + 6 = 5x - 9
5x - 9 = 5x - 9
0 = 0
Since the statement is true, there are infinitely many solutions
Answer: cost of 1 pot of ivy = $12
Cost of 1 rose bush =$ 10
Step-by-step explanation:
Step 1
Let rose bushes be represented as r
and pot of ivy be represented as p
such that Amy who spent 82 dollars on 7 rose bushes and 1 pot of ivy can be expressed as
7 r + p = 82----- eqn 1
Rob who spent 74 on 5 rose bushes and 2 pots of ivy can be expressed as
5r +2 p = 74----- eqn 2
Step 2
Solving
7 r + p = 82----- eqn 1
5r +2 p = 74----- eqn 2
By elimination method Multiply eqn 1 by 5 and eqn 2 by 7
35r+ 5p= 410--- eqn 3
35r+ 14p =518--- eqn 4
Subtracting eqn 4 from eqn 3
9p = 108
p = 108/9
p=12
p = pot of ivy = $12
therefore rose bush wll be ( from equation 1)
7r+ p= 82
7r=82-12
7r= 70 r= 70/7
r= rose bush =$ 10
Answer:
or y = 0.25x + 0.5
Step-by-step explanation:
You need to try change the subject from x to y.
x = 4y - 2
We first move -2 to the left, making the equation
x + 2 = 4y i.e.
4y = x + 2
We then divide both sides by 4.
or y = 0.25x + 0.5
We now have successfully made y the subject, and effectively solving the equation.
Answer:
x=3
Step-by-step explanation:
<em>3</em><em>x</em><em>-</em><em>4</em><em>=</em><em>8</em><em>-</em><em>x</em><em>(</em><em>Group</em><em> </em><em>like</em><em> </em><em>terms</em><em>)</em>
<em>3</em><em>x</em><em>+</em><em>x</em><em>=</em><em>8</em><em>+</em><em>4</em><em>(</em><em>Add</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
<em>4</em><em>x</em><em>=</em><em>1</em><em>2</em><em>(</em><em>After</em><em> </em><em>adding</em><em> </em><em>you</em><em> </em><em>will</em><em> </em><em>proceed </em><em>to</em><em> </em><em>divide</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>by</em><em> </em><em>4</em><em>)</em>
<em>x</em><em>=</em><em>3</em><em>(</em><em>x</em><em> </em><em>is</em><em> </em><em>3</em><em> </em><em>because</em><em> </em><em>4</em><em> </em><em>can</em><em> </em><em>divide</em><em> </em><em>1</em><em>2</em><em> </em><em>3</em><em> </em><em>times</em><em> </em><em>that's</em><em> </em><em>why</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>x</em><em> </em><em>as</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>3</em><em>)</em>
Answer:
w≤ -5
Step-by-step explanation:
hello :
w+4≤ -1
w+4-4≤ -1-7
w≤ -5