We want to factor the following expression: (x 3)^2 14(x 3) 49(x 3) 2 14(x 3) 49(, x, plus, 3, ), squared, plus, 14, (, x, plus,
Nesterboy [21]
Answer:


Step-by-step explanation:
Given

Required
Find U and V
We have:

Expand

Collect like terms


Expand

Group
![[x^2 + 10x] + [10x + 100] = (U + V)^2](https://tex.z-dn.net/?f=%5Bx%5E2%20%2B%2010x%5D%20%2B%20%5B10x%20%2B%20100%5D%20%3D%20%28U%20%2B%20V%29%5E2)
Factorize each group
![x[x + 10] + 10[x + 10] = (U + V)^2](https://tex.z-dn.net/?f=x%5Bx%20%2B%2010%5D%20%2B%2010%5Bx%20%2B%2010%5D%20%3D%20%28U%20%2B%20V%29%5E2)
Factor out x + 10
![[x + 10][x + 10] = (U + V)^2](https://tex.z-dn.net/?f=%5Bx%20%2B%2010%5D%5Bx%20%2B%2010%5D%20%3D%20%28U%20%2B%20V%29%5E2)
So, we have:
![[x + 10]^2 = (U + V)^2](https://tex.z-dn.net/?f=%5Bx%20%2B%2010%5D%5E2%20%3D%20%28U%20%2B%20V%29%5E2)
By comparison


Answer:
0.2
Step-by-step explanation:

<u>We </u><u>have </u><u>given </u><u>in </u><u>the </u><u>question </u><u>that</u><u>, </u>
- <u>The </u><u>sum </u><u>of </u><u>2</u><u> </u><u>numbers </u><u>is </u><u>equal </u><u>to </u><u>1</u><u>1</u><u> </u>
- <u>The </u><u>difference </u><u>between </u><u>two </u><u>numbers </u><u>is </u><u>1</u><u>9</u><u> </u><u>.</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y</u><u>. </u>

Let the two numbers be x and y
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>


<u>Solving </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>


<u>Subsituting </u><u>eq(</u><u>3</u><u> </u><u>)</u><u> </u><u>in </u><u>eq</u><u>(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>









<u>Now</u><u>, </u><u> </u><u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>3</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>




Hence, The value of x and y are 15 and (-4) .
2x - y = 5 = http://www.algebra.com/algebra/homework/Graphs/Graphs.faq.question.141166.html
h(x) = 2x + 4 is a line so it has infinite domain and range and no asymptotes.
D: {x ∈ R | -∞ < x < ∞ } Interval Notation: (-∞, ∞)
R: {y ∈ R | -∞ < y < ∞ } Interval Notation: (-∞, ∞)
Asymptotes: None