Answer:
88 inches
Step-by-step explanation:
The given bicycle has a tyre that is 28 inches in diameter.
How far the bicycle moves forward each time the wheel goes around is the circumference of the bicycle tyre.
This is calculated using the formula:
C =\pi \: d
We substitute the diameter and
\pi = \frac{22}{7}
C = \frac{22}{7} \times 28
This simplifies to
C =22 \times 4
88 \: inches
Answer:
- P(t) = 100·2.3^t
- 529 after 2 hours
- 441 per hour, rate of growth at 2 hours
- 5.5 hours to reach 10,000
Step-by-step explanation:
It often works well to write an exponential expression as ...
value = (initial value)×(growth factor)^(t/(growth period))
(a) Here, the growth factor for the bacteria is given as 230/100 = 2.3 in a period of 1 hour. The initial number is 100, so we can write the pupulation function as ...
P(t) = 100·2.3^t
__
(b) P(2) = 100·2.3^2 = 529 . . . number after 2 hours
__
(c) P'(t) = ln(2.3)P(t) ≈ 83.2909·2.3^t
P'(2) = 83.2909·2.3^2 ≈ 441 . . . bacteria per hour
__
(d) We want to find t such that ...
P(t) = 10000
100·2.3^t = 10000 . . . substitute for P(t)
2.3^t = 100 . . . . . . . . divide by 100
t·log(2.3) = log(100)
t = 2/log(2.3) ≈ 5.5 . . . hours until the population reaches 10,000
Answer:
a. V = (20-x)
b . 1185.185
Step-by-step explanation:
Given that:
- The height: 20 - x (in )
- Let x be the length of a side of the base of the box (x>0)
a. Write a polynomial function in factored form modeling the volume V of the box.
As we know that, this is a rectangular box has a square base so the Volume of it is:
V = h *
<=> V = (20-x)
b. What is the maximum possible volume of the box?
To maximum the volume of it, we need to use first derivative of the volume.
<=> dV / Dx = -3
+ 40x
Let dV / Dx = 0, we have:
-3
+ 40x = 0
<=> x = 40/3
=>the height h = 20/3
So the maximum possible volume of the box is:
V = 20/3 * 40/3 *40/3
= 1185.185