arbon, as with many elements, can arrange its atoms into several different geometries, or "allotropes." In pure diamond, every carbon atom is covalently bonded to exactly 4 other carbon atoms in a very specific and energetically favorable geometry. The diamond cannot be broken or scratched unless many covalent bonds are broken, which is difficult to do. In another common allotrope, graphite, every carbon atom is covalently bonded to only 3 other carbon atoms, and the atoms are arranged in sheets that are not covalently bonded to each other. The sheets can be broken apart easily, ultimately meaning that graphite can be easily scratched. Coal is composed of particles of different allotropes of carbon, and some "amorphous carbon," which has no defined geometry in its atomic structure. Without a continuous network of covalent bonds, coal is easily scratched (i.e. it is not hard).
Answer:
-blood type a
-blood type b
-SOMETIMES type o but very rarely.
Explanation:
Each biological parent donates one of their two ABO alleles to their child. A mother who is blood type O can only pass an O allele to her son or daughter. A father who is blood type AB could pass either an A or a B allele to his son or daughter. While a child could have the same blood type as one of his/her parents, it doesn't always happen that way. For example, parents with AB and O blood types can either have children with blood type A or blood type B.
Fruits with tiny hooks are most likely to be spread by animal hair.
Hope this helps!
The term "lipid" does not specify a particular chemical structure. Whereas one can write a general formula for an amino acid, nucleic acid, or protein, lipids are much more chemically diverse. Compounds are categorized as lipids based on their greater solubility in organic solvents than in water.