1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
CaHeK987 [17]
3 years ago
5

For what values of $x$ is $$\frac{x^2 + x + 3}{2x^2 + x - 6} \ge 0?$$ note: be thorough and explain why all points in your answe

r are solutions and why all points outside your answer are not solutions.

Mathematics
2 answers:
Rus_ich [418]3 years ago
5 0

To solve the inequality \frac{x^2+x+3}{2x^2+x-6}\ge \:0

\mathrm{Factor\:the\:left\:hand\:side\:}\frac{x^2+x+3}{2x^2+x-6}:

The numerator x^2+x+3 is not factorizable.

so factor the denominator 2x^2+x-6:

2x^2+x-6=\left(2x^2-3x\right)+\left(4x-6\right)=x\left(2x-3\right)+2\left(2x-3\right)\\ \mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2-3x\mathrm{:\quad }x\left(2x-3\right)\\ \mathrm{Factor\:out\:}2\mathrm{\:from\:}4x-6\mathrm{:\quad }2\left(2x-3\right)\\

Now take \mathrm{Factor\:out\:common\:term\:}\left(2x-3\right)

Then we get factor of the denominator as \left(2x-3\right)\left(x+2\right)

Thus \frac{x^2+x+3}{2x^2+x-6}=\frac{x^2+x+3}{\left(x+2\right)\left(2x-3\right)}

Now \mathrm{Compute\:the\:signs\:of\:the\:factors\:of\:}\frac{x^2+x+3}{\left(x+2\right)\left(2x-3\right)}\\

Signs of x^2+x+3>0

\mathrm{Choosing\:ranges\:that\:satisfy\:the\:required\:condition:}\:\ge \:\:0

x\frac{3}{2} is the required solution of the given inequality.

Anettt [7]3 years ago
3 0

Answer: (-\infty, -2)\cup(3/2,\infty)

Step-by-step explanation:

Here, the given expression,

\frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0

Since, for the value of x,

Denominator ≠ 0,

2x^2+x-6\neq 0

\implies 2x^2+4x - 3x - 6\neq =0

\implies 2x(x+2)-3(x+2)\neq 0

\implies (2x-3)(x+2)\neq 0

\text{ if }2x-3\neq 0\implies x\neq \frac{3}{2}

\text{If } x+2\neq 0\implies x\neq -2

Thus, there is three intervals possible,

1) (-\infty,-2)

2) (-2,\frac{3}{2})

3) (\frac{3}{2},\infty)

In first intervals, \frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0 is  true.

⇒ (-\infty,-2) will contain the value of x.

In second interval, \frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0

is not true,

⇒ (-2, -\frac{3}{2}) will not contain the value of x,

In third interval,

In third interval, \frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0

is true,

⇒ (-2, -\frac{3}{2}) will contain the value of x,

In third interval,

Thus, the value of x is,

(-\infty, -2)\cup(3/2,\infty)

You might be interested in
Two roller coasters are vying for the title of the steepest drop the first ride has a hill that drops 140 feet in a 40 foot run
muminat

Answer:

They have the same slope

Step-by-step explanation:

Given

Coaster 1:

Drops = 140ft

Run = 40ft

Coaster 2:

Drops = 105ft

Run = 30ft

First, we calculate the slope (m) of both coasters

m = \frac{Rise}{Run}

m = \frac{Drops}{Run}

For coaster 1:

m = \frac{140ft}{40ft}

m = \frac{140}{40}

m = 3.5

For coaster 1:

m = \frac{105ft}{30ft}

m = \frac{105}{30}

m = 3.5

<em></em>m = m=>3.5 = 3.5<em></em>

<em>By comparison, they have the same slope</em>

8 0
3 years ago
Help me, please !!!!!!!!!
Flura [38]
They did make the same color
7 0
2 years ago
For a binomial distribution with p = 0.20 and n = 100, what is the probability of obtaining a score less than or equal to x = 12
notsponge [240]
The binomial distribution is given by, 
P(X=x) =  (^{n}C_{x})p^{x} q^{n-x}
q = probability of failure = 1-0.2 = 0.8
n = 100
They have asked to find the probability <span>of obtaining a score less than or equal to 12.
</span>∴ P(X≤12) = (^{100}C_{x})(0.2)^{x} (0.8)^{100-x}
                    where, x = 0,1,2,3,4,5,6,7,8,9,10,11,12                  
∴ P(X≤12) = (^{100}C_{0})(0.2)^{0} (0.8)^{100-0} + (^{100}C_{1})(0.2)^{1} (0.8)^{100-1} + (^{100}C_{2})(0.2)^{2} (0.8)^{100-2} + (^{100}C_{3})(0.2)^{3} (0.8)^{100-3} + (^{100}C_{4})(0.2)^{4} (0.8)^{100-4} + (^{100}C_{5})(0.2)^{5} (0.8)^{100-5} + (^{100}C_{6})(0.2)^{6} (0.8)^{100-6} + (^{100}C_{7})(0.2)^{7} (0.8)^{100-7} + (^{100}C_{8})(0.2)^{8} (0.8)^{100-8} + (^{100}C_{9})(0.2)^{9} (0.8)^{100-9} + (^{100}C_{10})(0.2)^{10} (0.8)^{100-10} + (^{100}C_{11})(0.2)^{11} (0.8)^{100-11} + (^{100}C_{12})(0.2)^{12} (0.8)^{100-12}


Evaluating each term and adding them you will get,
P(X≤12) = 0.02532833572
This is the required probability. 
7 0
3 years ago
Which expressions are equivalent? <br> Plz hurry will mark brainlest whoever gets it right
Tcecarenko [31]

Answer:

i think it a or b but i might be wrong

Step-by-step explanation:

sry if it is wrong tho

3 0
3 years ago
Read 2 more answers
(-2, 8) and (1,2)<br> slope
Cerrena [4.2K]

Answer:

X=6

Y= -1

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • determine the quadratic function of f whose graph is given. The vertex is (1,-3) and the y-intercept is -2
    12·1 answer
  • 4/10 as a proper fraction
    9·2 answers
  • How do you find the value of x for this figure?
    14·1 answer
  • A graph of a quadratic function is shown on the grid.
    5·1 answer
  • Reduce to lowest term18/24
    5·2 answers
  • 4x-5y+2z=-3<br> 6x+4y+9z=8<br> 11x-2y-z=7
    12·1 answer
  • I need an answer for part A and B plz
    6·1 answer
  • Whats The Awnser
    15·2 answers
  • Jose purchased carpet to cover the floor of a rectangular room that has an area of 96 ft^2. The width of the room, he is carpeti
    15·1 answer
  • A manual with 325 pages has 3 pages without pictures.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!