1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
CaHeK987 [17]
4 years ago
5

For what values of $x$ is $$\frac{x^2 + x + 3}{2x^2 + x - 6} \ge 0?$$ note: be thorough and explain why all points in your answe

r are solutions and why all points outside your answer are not solutions.

Mathematics
2 answers:
Rus_ich [418]4 years ago
5 0

To solve the inequality \frac{x^2+x+3}{2x^2+x-6}\ge \:0

\mathrm{Factor\:the\:left\:hand\:side\:}\frac{x^2+x+3}{2x^2+x-6}:

The numerator x^2+x+3 is not factorizable.

so factor the denominator 2x^2+x-6:

2x^2+x-6=\left(2x^2-3x\right)+\left(4x-6\right)=x\left(2x-3\right)+2\left(2x-3\right)\\ \mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2-3x\mathrm{:\quad }x\left(2x-3\right)\\ \mathrm{Factor\:out\:}2\mathrm{\:from\:}4x-6\mathrm{:\quad }2\left(2x-3\right)\\

Now take \mathrm{Factor\:out\:common\:term\:}\left(2x-3\right)

Then we get factor of the denominator as \left(2x-3\right)\left(x+2\right)

Thus \frac{x^2+x+3}{2x^2+x-6}=\frac{x^2+x+3}{\left(x+2\right)\left(2x-3\right)}

Now \mathrm{Compute\:the\:signs\:of\:the\:factors\:of\:}\frac{x^2+x+3}{\left(x+2\right)\left(2x-3\right)}\\

Signs of x^2+x+3>0

\mathrm{Choosing\:ranges\:that\:satisfy\:the\:required\:condition:}\:\ge \:\:0

x\frac{3}{2} is the required solution of the given inequality.

Anettt [7]4 years ago
3 0

Answer: (-\infty, -2)\cup(3/2,\infty)

Step-by-step explanation:

Here, the given expression,

\frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0

Since, for the value of x,

Denominator ≠ 0,

2x^2+x-6\neq 0

\implies 2x^2+4x - 3x - 6\neq =0

\implies 2x(x+2)-3(x+2)\neq 0

\implies (2x-3)(x+2)\neq 0

\text{ if }2x-3\neq 0\implies x\neq \frac{3}{2}

\text{If } x+2\neq 0\implies x\neq -2

Thus, there is three intervals possible,

1) (-\infty,-2)

2) (-2,\frac{3}{2})

3) (\frac{3}{2},\infty)

In first intervals, \frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0 is  true.

⇒ (-\infty,-2) will contain the value of x.

In second interval, \frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0

is not true,

⇒ (-2, -\frac{3}{2}) will not contain the value of x,

In third interval,

In third interval, \frac{x^2 + x + 3}{2x^2 + x - 6} \geq 0

is true,

⇒ (-2, -\frac{3}{2}) will contain the value of x,

In third interval,

Thus, the value of x is,

(-\infty, -2)\cup(3/2,\infty)

You might be interested in
How do you solve number 13 and 14?
Ulleksa [173]
This is what I got hope u get it right gl

3 0
3 years ago
Can someone help me with this Q :)
mihalych1998 [28]

Answer:

its the digram: )

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Find dy/dx if y =x^3+5x+2/x²-1
stiks02 [169]

<u>Differentiate using the Quotient Rule</u> –

\qquad\pink{\twoheadrightarrow \sf \dfrac{d}{dx} \bigg[\dfrac{f(x)}{g(x)} \bigg]= \dfrac{ g(x)\:\dfrac{d}{dx}\bigg[f(x)\bigg] -f(x)\dfrac{d}{dx}\:\bigg[g(x)\bigg]}{g(x)^2}}\\

According to the given question, we have –

  • f(x) = x^3+5x+2
  • g(x) = x^2-1

Let's solve it!

\qquad\green{\twoheadrightarrow \bf \dfrac{d}{dx}\bigg[ \dfrac{x^3+5x+2 }{x^2-1}\bigg]} \\

\qquad\twoheadrightarrow \sf \dfrac{(x^2-1) \dfrac{d}{dx}(x^3+5x+2) - ( x^3+5x+2)  \dfrac{d}{dx}(x^2-1)}{(x^2-1)^2 }\\

\qquad\twoheadrightarrow \sf \dfrac{(x^2-1)(3x^2+5)  -  ( x^3+5x+2) 2x}{(x^2-1)^2 }\\

\qquad\pink{\sf \because \dfrac{d}{dx} x^n = nx^{n-1} }\\

\qquad\twoheadrightarrow \sf \dfrac{3x^4+5x^2-3x^2-5-(2x^4+10x^2+4x)}{(x^2-1)^2 }\\

\qquad\twoheadrightarrow \sf \dfrac{3x^4+5x^2-3x^2-5-2x^4-10x^2-4x}{(x^2-1)^2 }\\

\qquad\green{\twoheadrightarrow \bf \dfrac{x^4-8x^2-4x-5}{(x^2-1)^2 }}\\

\qquad\pink{\therefore  \bf{\green{\underline{\underline{\dfrac{d}{dx} \dfrac{x^3+5x+2 }{x^2-1}}  =  \dfrac{x^4-8x^2-4x-5}{(x^2-1)^2 }}}}}\\\\

7 0
2 years ago
Consider the equation 9x+3=x−1. Squaring the left side and simplifying results in​ _______. Squaring the right side and simplify
bixtya [17]

Answer:

The first blank is 81x^{2}+9=x-1

The second blank is 9x+3=x^2-1

Step-by-step explanation:

For the first part, you must set up the equation (9x+3)^2       then you must multiply the exponent to the inside exponents 9^{2} x^{2}+3^{2} next, simplify.

81x^{2}+9=x-1

For part two, set up equation. x^{2} -1^{2} Then simplify 9x+3= x^{2} -1

6 0
3 years ago
2
Gemiola [76]

9514 1404 393

Answer:

  • 14 nickels
  • 6 dimes

Step-by-step explanation:

The system of equations can be written ...

  n + d = 20 . . . . . . . . coins in the jar

  5n +10d = 130 . . . . . value in cents

_____

Using the first equation, we can write an expression for n:

  n = 20 -d

We can substitute this into the second equation:

  5(20 -d) +10d = 130

  100 +5d = 130 . . . . . . simplify

  5d = 30 . . . . . . . . . . . . subtract 100

  d = 6 . . . . . . . . . . . . divide by 5

  n = 20-d = 14

The jar contains 14 nickels and 6 dimes.

7 0
3 years ago
Other questions:
  • A cylinder has a volume of 245 cubic units and a height of 5 units. The diameter of the cylinder is 7 units 14 units 49 units
    6·2 answers
  • There were 200,000 animals of a certain species in 1980. Since then,this number has decreased by 4.5% each year. Approximately h
    11·2 answers
  • I NEED HELP ASAP !<br><br><br> Which shows the list of numbers in order from least to greatest?
    6·1 answer
  • Pleeaase help.......
    12·2 answers
  • 1. Express 30 out of 40 and 40 out of 50 as a percentage. Which is<br> the better score?
    8·1 answer
  • -7.66666, \sqrt(50,) -(157)/(20), -7.64 list these from least to greatest.
    13·1 answer
  • PLZ HELP ITS DUR RIGHT NOW AND PLZ ANSWER TRUTHFULLY
    14·1 answer
  • PLEASE HELP<br> will mark brainliest<br> 10 points
    5·2 answers
  • Solve the quadratic equation. Simplify if possible:<br><br> -5 (x + 3) 2 = -80
    11·1 answer
  • Please help me out!!!!!!!!!!!!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!