Let
. The tangent plane to the surface at (0, 0, 8) is

The gradient is

so the tangent plane's equation is

The normal vector to the plane at (0, 0, 8) is the same as the gradient of the surface at this point, (1, 1, 1). We can get all points along the line containing this vector by scaling the vector by
, then ensure it passes through (0, 0, 8) by translating the line so that it does. Then the line has parametric equation

or
,
, and
.
(See the attached plot; the given surface is orange, (0, 0, 8) is the black point, the tangent plane is blue, and the red line is the normal at this point)
Answer:
The last option
V = (-1.5,3)
other options dont lie where V is exact
V is only Exact at (-1.5,3)
Answer:
C. 20.10
Step-by-step explanation:
V=4/3r^3
The number at the end of the equation shifts the graph up or down.
Changing the 1/2 to a -2 would shift the graph down which would change the y-intercept.
The answer is D.
Answer:
The height of the lighthouse is approximately 166.6 feet.
Step-by-step explanation:
Let the height of the lighthouse be represented by s, then;
Tan 48° = (opposite) ÷ (adjacent)
Tan 48° = s ÷ 150
⇒ s = 150 × Tan 48°
= 150 × 1.1106
= 166.59
s ≅ 166.6 feet
Therefore, the height of the lighthouse is approximately 166.6 feet.