Answer:
they are able to perform a specialized function in the body
Answer: Hello your question is incomplete below is the complete question
Let’s look at a different gene locus, we’ll call it B. The normal, wild type, the population was 100% BB. There are 150 Pakicetus in the population at present. Assume Charles had another mutation; this one at the B locus, to produce allele b. What is the gene frequency of allele b in the population if the population of Pakicetus reaches 100,000
answer : ≈ 1
Explanation:
<u>Determine the Gene frequency of allele b </u>
Population = 100,000
There are 150 Pakicetus in population i.e. 300 alleles at locus B
hence the frequency of b = 1/300 = 0.33%
Increase in population does not affect frequency of b ( HW equilibrium )
<em>therefore the Gene frequency of allele b </em>
= 0.33% * 0.33% * 100000 = 1.08
≈ 1
<span>The ramp on an automobile transport truck is used to lift cars high into the air. An inclined plane makes it easier to raise something heavy, like a rock. Instead of lifting the rock straight up, you can raise it from its original location with less force by pushing it up a ramp.</span>
Answer:
(b) Voltage gated
Explanation:
The cell membrane acts as a barrier that separates two aqueous media of different composition, the extracellular and the intracellular, regulating its composition. Most of the liposoluble drugs and solutes, when not ionized, directly cross the cell membrane through a passive diffusion process, which facilitates the passage of the medium where it is more concentrated to the one that is more diluted. The difference in concentration between the two media is called the concentration gradient, and diffusion will continue until this gradient is eliminated. According to Fick's law, the speed of this process will be much faster the higher the concentration gradient and the liposolubility of the molecule and the smaller its size.
More hydrophilic molecules, such as ions, are immiscible in membrane lipids and pass through specific specific transport mechanisms. In some cases, ions pass through hydrophilic pores called ion channels, and in others a favor of their concentration gradient is transported by binding to the transporter or transporter proteins. Both transport systems are passive and therefore do not consume energy. The great advantage is that the ion channels allow the flow of ions through a much higher speed than that of any other biological system. The flow of ions through each channel can be measured as an electric current, which is capable of producing rapid changes in membrane potential.