if we take 64 to be the 100%, how much is 6¼% off of it?
![\bf \begin{array}{ccll} amount&\%\\ \cline{1-2} 64&100\\ x&6\frac{1}{4} \end{array}\implies \cfrac{64}{x}=\cfrac{100}{6\frac{1}{4}}\implies \cfrac{64}{x}=\cfrac{\frac{100}{1}}{\frac{25}{4}}\implies \cfrac{64}{x}=\cfrac{100}{1}\cdot \cfrac{4}{25} \\\\\\ \cfrac{64}{x}=16\implies 64=16x\implies \cfrac{64}{16}=x\implies 4=x \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{it had}}{64}-\stackrel{\textit{leakage}}{4}\implies \stackrel{\textit{remaining}}{60}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20amount%26%5C%25%5C%5C%20%5Ccline%7B1-2%7D%2064%26100%5C%5C%20x%266%5Cfrac%7B1%7D%7B4%7D%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B64%7D%7Bx%7D%3D%5Ccfrac%7B100%7D%7B6%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B64%7D%7Bx%7D%3D%5Ccfrac%7B%5Cfrac%7B100%7D%7B1%7D%7D%7B%5Cfrac%7B25%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B64%7D%7Bx%7D%3D%5Ccfrac%7B100%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B4%7D%7B25%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B64%7D%7Bx%7D%3D16%5Cimplies%2064%3D16x%5Cimplies%20%5Ccfrac%7B64%7D%7B16%7D%3Dx%5Cimplies%204%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bit%20had%7D%7D%7B64%7D-%5Cstackrel%7B%5Ctextit%7Bleakage%7D%7D%7B4%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bremaining%7D%7D%7B60%7D)
Answer:
A.
Step-by-step explanation:
Since it says greater than, that means that it cannot be B or D. And ≥ means greater than or equal to and they don't state that in the problem. So the answer would be A.
I HOPE THIS HELPED! :)
A= (2,-2)
B= (-2,-2)
C=(2,4)
D=(-2,2)
if this helped Brainliest me on this answer it helps alot :))
1)
8² + 15² = 17²
64 + 225 = 289
This is true, so the triangle is a right triangle.
2)
4² + 12² = 13²
16 + 144 = 169
This is false, so the triangle is not a right triangle.
3)
20² + 21² = 27²
400 + 441 = 729
This is false, so the triangle is not a right triangle.
4)
28² + 45² = 53²
784 + 2,025 = 2,809
This is true, so the triangle is a right triangle.
The common ratio is -5, note that each value is the previous value multiplied by -5.