1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
2 years ago
7

the sum of the first n terms of a sequence is 20 - 10 / 2 ^ n - 1 find the sum of the first five terms​

Mathematics
1 answer:
Travka [436]2 years ago
6 0

Answer:

S_5=\dfrac{170}{9}

Step-by-step explanation:

Given that,

The sum of first n term of a sequence isS_n=20-\dfrac{10}{2n-1}

We need to find the sum of the first 5 terms.

Put n = 5,

S_5=20-\dfrac{10}{2(5)-1}\\\\=20-\dfrac{10}{10-1}\\\\=20-\dfrac{10}{9}\\\\=\dfrac{170}{9}

So, the sum of first 5 terms is equal to \dfrac{170}{9}.

You might be interested in
Help me with the right answer
Nadya [2.5K]

Answer:

x = 3

y = 1

Step-by-step explanation:

9x - y = 26  ---------------(I)

9x + y = 28 ---------------(II)

9x - y = 26

9x = 26 + y

Substitute 9x = 26 + y in equation (II)

26 + y + y = 28               {add like terms}

26 + 2y = 28             {subtract 26 from both sides}

         2y = 28 - 26

        2y = 2    {divide both sides by 2}

           y = 2/2

y = 1

Substitute y =1 in equation (I)

9x - 1 = 26

9x = 26 + 1

9x = 27

x = 27/9

x = 3

x = 3

y = 1

6 0
3 years ago
Read 2 more answers
Alan bought a suit on sale for $208. This price was 35% less than the original price.
algol [13]

Answer:

280.8

Step-by-step explanation:

Since 100% is the full amount, and it is 35% off you add 35 to the 100. So you get 1.35. You finally multiply by 207 and get 280.8

7 0
3 years ago
Mittens are marked down 25%. The sale price is $3.15 a pair. What was the original price of a pair of kittens.
madreJ [45]
The answer is $4.20. Hope this helped
6 0
3 years ago
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ 
\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ 
\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation 
becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} 
\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} 
\end{array}


\large\begin{array}{l} \textsf{Using 
the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ 
\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ 
\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ 
\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ 
\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot
 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}
 \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ 
\mathsf{\Delta=(4.8)^2}\\\\\\ 
\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ 
\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ 
\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! 
2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} 
\end{array}

\large\begin{array}{l} \begin{array}{rcl} 
\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ 
\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} 
\end{array}


\large\begin{array}{l} \textsf{Both 
are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ 
\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or 
}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse 
tangent function:}\\\\ \begin{array}{rcl} 
\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ 
\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ 
\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}
 \textsf{Now, restrict x values to the interval 
}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ 
\begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} 
\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{
 is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx 
4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} 
\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} 
\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}
 \textsf{Solution set:}\\\\ 
\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}
 \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
I need help on this pls
DiKsa [7]
I think it's 9
Hope this helps!
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the true solution to 3 in 2 + in 8 = 2 in (4x)
    13·2 answers
  • What is the value of 3 + y ÷ 4, when y = 16?
    5·1 answer
  • How would I set up the equation to find mRQS on this circle?
    6·1 answer
  • Kevin gates flew at 18 miles per hour for 3 hours. Then at 15 miles per hour for 2 hours. How far did kevin gates fly in all?
    14·1 answer
  • What is 1/4 as a whole number?
    13·2 answers
  • Solve 3y + 11 = - 16​
    6·1 answer
  • 5.A. Jonah filled a box and said its volume was 25 balls. Shandra filled the same box and said its volumen was 36 cubes. Explain
    7·1 answer
  • A football field is 120 yards long and 160 yards wide. How many square yards of grass is needed to cover the field? Show your ca
    6·1 answer
  • A large fitness center offers a track, weight room, and pool. The fitness center charges $29 per month for a basic
    7·2 answers
  • A distribution of 1000 test scores has a mean of u = 287. Following standardization, what is the standard deviation for this dis
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!