1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
14

Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.

Mathematics
1 answer:
Sedaia [141]3 years ago
6 0
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ 
\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ 
\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation 
becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} 
\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} 
\end{array}


\large\begin{array}{l} \textsf{Using 
the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ 
\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ 
\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ 
\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ 
\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot
 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}
 \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ 
\mathsf{\Delta=(4.8)^2}\\\\\\ 
\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ 
\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ 
\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! 
2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} 
\end{array}

\large\begin{array}{l} \begin{array}{rcl} 
\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ 
\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} 
\end{array}


\large\begin{array}{l} \textsf{Both 
are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ 
\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or 
}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse 
tangent function:}\\\\ \begin{array}{rcl} 
\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ 
\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ 
\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}
 \textsf{Now, restrict x values to the interval 
}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ 
\begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} 
\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{
 is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx 
4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} 
\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} 
\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}
 \textsf{Solution set:}\\\\ 
\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}
 \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

You might be interested in
Somebody answer this for me please
Mamont248 [21]
X // Y,    Y //  Z,   

By inference  X //  Z


The third option.
4 0
3 years ago
What is the indicated operation of <br> 10 3/7 + 19 5/9
seraphim [82]
That's addition of mixed numbers.  Convert 3/7 and 5/9 to fractions with the denominator (7)(9) = 63 (this is the LCD):

10 27/63 + 19 35/63

This comes out to 29 62/63.
4 0
2 years ago
A silo is constructed using a cylinder with a hemisphere on top. The circumference of the hemisphere and the circumference of th
Juli2301 [7.4K]

Answer:

The answer is 450 pi  square feet

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Do you agree with the equation? Explain why or why not.
marin [14]
We have that

[√(2x+1)]+3=0
for x=4
[√(2*4+1)]+3=0
[√(9)]+3=0
3+3=0----------6 is not zero
therefore
the solution is not correct for x=4


[√(2x+1)]+3=0--------> [√(2x+1)]=-3---------> <span>There is no real solution for that equation
</span>Because (2x+1) >= 0
the solution is with complex numbers

8 0
2 years ago
Determine the domain of the function:<br> <img src="https://tex.z-dn.net/?f=y%3D%20%5Cfrac%7B%28x-2%29%7D%7B%28x-2%29%28x%2B4%29
k0ka [10]
D:x-2\not=0 \wedge x+4\not=0\\&#10;D:x\not =2 \wedge x\not=-4\\&#10;D:x\in\mathbb{R}\setminus \{-4,2\}&#10;
5 0
2 years ago
Other questions:
  • . (03.04 MC) The following is an incomplete paragraph proving that the opposite angles of parallelogram ABCD are congruent: Para
    5·2 answers
  • traveling at 65 mph, how many minutes, rounded to the nearest whole number, does it take to drive 125 miles from San Diego to ma
    12·1 answer
  • I NEED HELP ASAP!!
    12·1 answer
  • a swimming pool 25m by 10m has a concrete border all round. Find the area of the concrete border if it is 2.5m wide at the sides
    5·1 answer
  • A line passes (-8,-2) and has a slope of 5/4. Write an equation in Ax + By=C
    8·2 answers
  • 5
    12·1 answer
  • Factor 48m+42n to identify the equivalent expressions.
    6·1 answer
  • Help please thank you
    9·2 answers
  • Please help me on this will give you brainliest
    8·1 answer
  • (3x4)^4 simplify using power rule
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!