1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
14

Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.

Mathematics
1 answer:
Sedaia [141]3 years ago
6 0
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ 
\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ 
\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation 
becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} 
\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} 
\end{array}


\large\begin{array}{l} \textsf{Using 
the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ 
\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ 
\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ 
\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ 
\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot
 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}
 \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ 
\mathsf{\Delta=(4.8)^2}\\\\\\ 
\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ 
\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ 
\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! 
2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} 
\end{array}

\large\begin{array}{l} \begin{array}{rcl} 
\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ 
\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} 
\end{array}


\large\begin{array}{l} \textsf{Both 
are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ 
\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or 
}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse 
tangent function:}\\\\ \begin{array}{rcl} 
\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ 
\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ 
\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}
 \textsf{Now, restrict x values to the interval 
}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ 
\begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} 
\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ 
\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{
 is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx 
4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}
 \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} 
\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or 
}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} 
\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} 
\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ 
\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}
 \textsf{Solution set:}\\\\ 
\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}
 \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

You might be interested in
Pleasee help ASAP!! No links pleaseee!!!
Ilya [14]

Given:

The vertices of the rectangle ABCD are A(0,1), B(2,4), C(6,0), D(4,-3).

To find:

The area of the rectangle.

Solution:

Distance formula:

D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Using the distance formula, we get

AB=\sqrt{(2-0)^2+(4-1)^2}

AB=\sqrt{(2)^2+(3)^2}

AB=\sqrt{4+9}

AB=\sqrt{13}

Similarly,

BC=\sqrt{(6-2)^2+(0-4)^2}

BC=\sqrt{(4)^2+(-4)^2}

BC=\sqrt{16+16}

BC=\sqrt{32}

BC=4\sqrt{2}

Now, the length of the rectangle is AB=\sqrt{13} and the width of the rectangle is BC=4\sqrt{2}. So, the area of the rectangle is:

A=length \times width

A=\sqrt{13}\times 4\sqrt{2}

A=4\sqrt{26}

A\approx 20

Therefore, the area of the rectangle is 20 square units.

3 0
3 years ago
48 ounces to 5 Pounds (ratio)
koban [17]

Answer:

3:5

Step-by-step explanation:

16 ounces = 1 pound

80 ounces =5 pounds

Simplify:

48:80

6:10

3:5

Hope this helped! :)

4 0
3 years ago
PLSS HELP ME ITS TIMED ILL MARK BRAINLIEST
Fed [463]

Answer:

56 times 52 times 76 divide by 4 = ? times 3 dont forget to add cm cubed at the end

Step-by-step explanation:

8 0
3 years ago
Solve the absolute value inequality: |8x + 5| &gt; 15. Express using interval notation
kirill [66]

Answer:

8 < 2

Step-by-step explanation:

8x + 5 > 15

8x > 15 - 5

8x > 10

x < 2

cmiiw

5 0
3 years ago
2x + 5y = 19<br> y = 3x - 3<br> Solve for x and y
ozzi

I dont know if i did this right but here

x1 = 9.5    y1 = 0

8 0
3 years ago
Other questions:
  • A bank teller notices that an account was overdrawn and had a balance that can be represented by –$324. The account holder then
    14·2 answers
  • John's age is 4 more than 3 time Mike's age. If their sum is 20, how old are Mike and John?
    13·1 answer
  • An archer hits his target 80% of the time. If he shoots 7 arrows, what is the probability of each event
    5·1 answer
  • Choose the solution set represented by the following graph.
    13·1 answer
  • a car costs 25,750.00 and depreciates in value 20%per year. how much will the car be worth in 5 years?
    10·1 answer
  • S
    5·1 answer
  • You play a game that involves spinning a wheel. Each section of the wheel shown has the same area. Use a sample space to determi
    14·2 answers
  • Solve for the distance between (13,55) and (61,22). Round your answer to the nearest hundredth.​
    9·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cfrac%7Bk%7D%7B12%7D%20%3D2" id="TexFormula1" title="\frac{k}{12} =2" alt="\frac{k}{12} =2"
    8·2 answers
  • Answer this sheet pls I have no context
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!