y = 9ln(x)
<span>y' = 9x^-1 =9/x</span>
y'' = -9x^-2 =-9/x^2
curvature k = |y''| / (1 + (y')^2)^(3/2)
<span>= |-9/x^2| / (1 + (9/x)^2)^(3/2)
= (9/x^2) / (1 + 81/x^2)^(3/2)
= (9/x^2) / [(1/x^3) (x^2 + 81)^(3/2)]
= 9x(x^2 + 81)^(-3/2).
To maximize the curvature, </span>
we find where k' = 0. <span>
k' = 9 * (x^2 + 81)^(-3/2) + 9x * -3x(x^2 + 81)^(-5/2)
...= 9(x^2 + 81)^(-5/2) [(x^2 + 81) - 3x^2]
...= 9(81 - 2x^2)/(x^2 + 81)^(5/2)
Setting k' = 0 yields x = ±9/√2.
Since k' < 0 for x < -9/√2 and k' > 0 for x >
-9/√2 (and less than 9/√2),
we have a minimum at x = -9/√2.
Since k' > 0 for x < 9/√2 (and greater than 9/√2) and
k' < 0 for x > 9/√2,
we have a maximum at x = 9/√2. </span>
x=9/√2=6.36
<span>y=9 ln(x)=9ln(6.36)=16.66</span>
the
answer is
(x,y)=(6.36,16.66)
As stated, the answer is rate*time.
Think of it like this:
If you go 65 mph, then in one hour, you'll have gone 65 miles because that's what the unit indicates: miles per 1 hour.
So, 2 hours means 65*2=130 miles, and so on...
So, in 7 hours, it's 65*7=455 miles.
Answer:
B
Step-by-step explanation:
-2 x -0.7 + 3.2 = 3.2
If the area of the old garden was 1m^2, then the side lengths were both 1
if she increases the lengths by 50%, then 1 turns into 1.5
1.5 times 1.5 is 2.25
The area of her new garden is 2.25m^2