Answer:
9 < x < 17 is the possible length of the third side of a triangle.
Step-by-step explanation:
The Triangle Inequality theorem defines that if we are given two sides of a triangle, the sum of any two given sides of a triangle must be greater than the measure of the 3rd side.
Given the two sides of the triangle
Let 'x' be the length of 3rd size.
According to the Triangle Inequality theorem,
The difference of two sides < x < The sum of two sides
13 - 4 < x < 13+4
9 < x < 17
Therefore, 9 < x < 17 is the possible length of the third side of a triangle.
Answer:
I think it's 4.52. Only if that's one of the options I guess. Good luck!
Answer:
9. 66°
10. 44°
11.
12.
13. 27.3
14. 33.9
15. 22°
16. 24°
Step-by-step explanation:
9. Add 120 + 80 (equals 200) and subtract that from 360 (Because all angles in a quadrilteral add to 360°), this equals 160. Plug the same number in for both variables in the two other angle equations until the two angles add to 160. For shown work on #9, write:
120 + 80 = 200
360 - 200 = 160
12(5) + 6 = 66°
19(5) - 1 = 94°
94 + 66 = 160
10. Because the two sides are marked as congruent, the two angles are as well. This means the unlabeled angle is also 68°. The interior angles of a triangle always add to 180°, so add 68+68 (equals 136) and subtract that from 180, this equals 44. For shown work on #10, write:
68 x 2 = 136
180 - 136 = 44
11. Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #10, write:
a² + b² = c²
a² + 6² = 8²
a² + 36 = 64
a² = 28
a =
a =
12. (Same steps as #11) Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #11, write:
a² + b² = c²
a² + 2² = 4²
a² + 4 = 16
a² = 12
a =
a =
13. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #13, write:
Sin(47°) =
x = 27.3
14. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #14, write:
Tan(62°) =
x = 33.9
15. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #15, write:
cos(θ) = 52/56
θ = cos^-1 (0.93)
θ = 22°
16. (Same steps as #15) Use SOH CAH TOA and solve with a scientific calculator. For shown work on #16, write:
sin(θ) = 4/10
θ = sin^-1 (0.4)
θ = 24°
Good luck!!
Replace every x you see in the function with 1 and simplify.
Let x be 1.
f(1) = 4(1)^2 -(1) + 3
f(1) = 4(1) - 1 + 3
f(1) = 4 - 1 + 3
f(1) = 3 + 3
f(1) = 6
Done!