The value of x in tan(x)=sin38° is 31.6 and the value of x in cosec(x+10°)=1.345 is 38.0
<h3>How to solve the trigonometry ratios?</h3>
The equations are given as:
tan(x)=sin38°
cosec( x+10°)=1.345
In tan(x)=sin38°, we have:
tan(x)=0.6157
Take the arc tan of both sides
x = 31.6
Also, we have:
cosec(x+10°)=1.345
Take the inverse of both sides
sin(x+10°) = 0.7434
Take the arc sin of both sides
x+10 = 48.0
Subtract 10 from both sides
x = 38.0
Hence, the value of x in tan(x)=sin38° is 31.6 and the value of x in cosec(x+10°)=1.345 is 38.0
Read more about trigonometry ratios at:
brainly.com/question/11967894
#SPJ1
Answer:
1)
2) 
3)
4)
Step-by-step explanation:
The slope formula of the line that pass across two points P1(x1,y1) and P2(x2,y2) is:

You can use this formula to solve all the four points:
1)

2)

3)

4)

Answer:
k = 4, y = 4x
Step-by-step explanation:
From the question, we get the ratio of :
x : y = 1 : 4
Two variables are proportional to each other if their ration is constant. The constant value is denoted by 'k' and is called as constant of proportionality.
In the question, the two variables are :
x = glasses of lemonade
y = lemons used
From the question, the ratio of y is to x is given by :
y : x is 24 : 6 = 4 : 1 or 24/6 = 4
32 : 8 = 4 : 1 or 32/8 = 4
28 : 7 = 4 : 1 or 28/7 = 4
8 : 2 = 4 : 1 or 8/2 = 4
16 : 4 = 4 : 1 or 16/4 = 4
So here the constant is 4 . Therefore, the constant of proportionality, k is 4.
So we can write the equation as :
y = kx
or y = 4x
<u>Given</u>:
Given that the graph OACE.
The coordinates of the vertices OACE are O(0,0), A(2m, 2n), C(2p, 2r) and E(2t, 0)
We need to determine the midpoint of EC.
<u>Midpoint of EC:</u>
The midpoint of EC can be determined using the formula,

Substituting the coordinates E(2t,0) and C(2p, 2r), we get;

Simplifying, we get;

Dividing, we get;

Thus, the midpoint of EC is (t + p, r)
Hence, Option A is the correct answer.