1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
5

I NEED HELP PLEASEEE

Mathematics
1 answer:
anyanavicka [17]3 years ago
4 0
Use photomath it helps a lot
You might be interested in
2x+3y=6 x+2y=5 elimination
ValentinkaMS [17]
In this equation you can eliminate the x value
multiply the second equation by -2 and you get:
-2x - 2y = -10 
when you add the two equations the x factors will cancel

   2x + 3y = 6
-  2x - 2y = -10 
---------------------
             y = 16

you can find the x value by plugging the y value that you now know into one of the equations that you started off with.


4 0
3 years ago
Prove the following
fomenos

Answer:

Step-by-step explanation:

\large\underline{\sf{Solution-}}

<h2 /><h2><u>Consider</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \dfrac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \}cos(23π+x)cos(2π+x)

<h2><u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) = sinx

\rm \: {cos \: (2\pi + x) }

\rm \: \cot \bigg( \dfrac{3\pi}{2} - x \bigg) \: = \: tanx

\rm \: cot(2\pi + x) \: = \: cotx

So, on substituting all these values, we get

\rm \: = \: sinx \: cosx \: (tanx \: + \: cotx)

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{sinx}{cosx} + \dfrac{cosx}{sinx}

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{ {sin}^{2}x + {cos}^{2}x}{cosx \: sinx}

\rm \: = \: 1=1

<h2>Hence,</h2>

\boxed{\tt{ \cos \bigg( \frac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \frac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2>ADDITIONAL INFORMATION :-</h2>

Sign of Trigonometric ratios in Quadrants

  • sin (90°-θ)  =  cos θ
  • cos (90°-θ)  =  sin θ
  • tan (90°-θ)  =  cot θ
  • csc (90°-θ)  =  sec θ
  • sec (90°-θ)  =  csc θ
  • cot (90°-θ)  =  tan θ
  • sin (90°+θ)  =  cos θ
  • cos (90°+θ)  =  -sin θ
  • tan (90°+θ)  =  -cot θ
  • csc (90°+θ)  =  sec θ
  • sec (90°+θ)  =  -csc θ
  • cot (90°+θ)  =  -tan θ
  • sin (180°-θ)  =  sin θ
  • cos (180°-θ)  =  -cos θ
  • tan (180°-θ)  =  -tan θ
  • csc (180°-θ)  =  csc θ
  • sec (180°-θ)  =  -sec θ
  • cot (180°-θ)  =  -cot θ
  • sin (180°+θ)  =  -sin θ
  • cos (180°+θ)  =  -cos θ
  • tan (180°+θ)  =  tan θ
  • csc (180°+θ)  =  -csc θ
  • sec (180°+θ)  =  -sec θ
  • cot (180°+θ)  =  cot θ
  • sin (270°-θ)  =  -cos θ
  • cos (270°-θ)  =  -sin θ
  • tan (270°-θ)  =  cot θ
  • csc (270°-θ)  =  -sec θ
  • sec (270°-θ)  =  -csc θ
  • cot (270°-θ)  =  tan θ
  • sin (270°+θ)  =  -cos θ
  • cos (270°+θ)  =  sin θ
  • tan (270°+θ)  =  -cot θ
  • csc (270°+θ)  =  -sec θ
  • sec (270°+θ)  =  cos θ
  • cot (270°+θ)  =  -tan θ
7 0
3 years ago
Read 2 more answers
A display at the natural science museum contains 21 plant and animal fossils 4/7 of the fossils in the display are animal fossil
faust18 [17]
There are 12 animal fossils. I found this by dividing 21 by 7 and multiplying that answer by 4.
5 0
3 years ago
Read 2 more answers
A student repeatedly measures the mass of an object using a mechanical balance and gets the following values: 560 g, 562 g, 556
MrRissso [65]

Answer: 2.76 g

Step-by-step explanation:

The formula to find the standard deviation:-

\sigma=\sqrt{\dfrac{\sum(x_i-\overline{x})^2}{n}}

The given data values : 560 g, 562 g, 556 g, 558 g, 560 g, 556 g, 559 g, 561 g, 565 g, 563 g.

Then,  \overline{x}=\dfrac{\sum_{i=1}^{10} x_i}{n}\\\\\Rightarrow\ \overline{x}=\dfrac{560+562+556+558+560+556+559+561+565+563}{10}\\\\\Rightarrow\ \overline{x}=\dfrac{5600}{10}=560

Now, \sum_{i=1}^{10}(x_i-\overline{x})^2=0^2+2^2+(-4)^2+(-2)^2+0^2+(-4)^2+(-1)^2+1^2+5^2+3^2\\\\\Rightarrow\ \sum_{i=1}^{10}(x_i-\overline{x})^2=76

Then, \sigma=\sqrt{\dfrac{76}{10}}=\sqrt{7.6}=2.76

Hence, the  standard deviation of his measurements = 2.76 g

6 0
4 years ago
If we draw a 5-card hand from a standard 52-card deck, what is the probability that all 5 cards are hearts?
Sveta_85 [38]
Pretty frequent .... I hope I was right and this helps

7 0
4 years ago
Other questions:
  • Which sequence below represents an exponential sequence? A) {2, 6, 10, 14, 18,...} B) {3, 5, 9, 16, 24,...} C) {4, 8, 24, 96,...
    6·1 answer
  • How would you solve this problem?
    14·2 answers
  • Question 10 (1 point)
    15·1 answer
  • An office upgrades its internet speed from 15^6 bits per second to 15^9 bits per second. How many times greater is the new inter
    14·2 answers
  • Multiply and simplify the following complex numbers:<br> (-3 - 2i) x (-4 + 2i)
    8·1 answer
  • How many ways to make 59
    10·1 answer
  • Consider the following hypothesis test: H 0: 20 H a: &lt; 20 A sample of 60 provided a sample mean of 19.5. The population stand
    7·1 answer
  • I'll give brainliest
    7·1 answer
  • When x=8, y=20. find y when x=42.
    9·1 answer
  • Please answer my question
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!