1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OverLord2011 [107]
3 years ago
13

Jasraj left his house and walked 1500 m east to the supermarket. He then walked another 500 m east to the comic store before wal

king back home the same way he came. How many kilometers did Jasraj walk altogether?
Mathematics
1 answer:
ivolga24 [154]3 years ago
4 0

Answer:

Jasraj walked 4 kilometers all together

Step-by-step explanation:

First, add.

1,500 + 500 = 2,000

Then, multiply by 2.

2,000 × 2 = 4,000

Now, we have to convert to kilometers.

1 kilometer = 1000 meters

4,000 ÷ 1,000 = 4

So, Jasraj walked 4 kilometers!

Have a wondeful day! :)

You might be interested in
WILL MARK BRAINLIEST IF ANSWERED
bazaltina [42]
<h3>Answer:</h3><h3>X = 10</h3>

Step-by-step explanation:

5 0
3 years ago
If y varies inversely as x and y=-11 when x=1, what is y when x =11?
faust18 [17]

Answer:

I thinks it is -11

Step-by-step explanation:

3 0
3 years ago
A quadrilateral is shown. One pair of opposite sides have lengths of 10 inches and (x + 2) inches. The other pair of opposite si
ziro4ka [17]

Step-by-step explanation:

Yes, one pair of opposite sides could measure 10 inches. and the other pair could measure 13 inches

3 0
3 years ago
Read 2 more answers
Determine the first four terms of the sequence in which the nth term is...
Anon25 [30]

Answer:

1/5, 1/6, 1/7, 1/8

Step-by-step explanation:

The formula for the sequence is (n+3)!/ (n+4)!

The first terms uses n=1

a1 = (1+3)!/ (1+4)! = 4!/5! = (4*3*2*1)/(5*4*3*2*1) = 1/5


The first terms uses n=2

a2 = (2+3)!/ (2+4)! = 5!/6! = (5*4*3*2*1)/(6*5*4*3*2*1) = 1/6


The first terms uses n=3

a3 = (3+3)!/ (3+4)! = 6!/7! = (6*5*4*3*2*1)/(7*6*5*4*3*2*1) = 1/7


The first terms uses n=4

a4 = (4+3)!/ (4+4)! = 7!/8! = (7*6*5*4*3*2*1)/(8*7*6*5*4*3*2*1) = 1/8

7 0
3 years ago
Read 2 more answers
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Other questions:
  • Which one of these numbers is different? 25,16,49,63,81
    6·2 answers
  • 5 − (x + 5) &gt; −2(x + 4)
    7·2 answers
  • The shape of a satellite dish can be described as parabolic. Satellite dishes are this shape because radio waves are reflected f
    12·2 answers
  • HELP ASAP WILL MARK BRAINLIEST
    11·1 answer
  • In one study on the effect of argan oil on wrinkles, 125 subjects who acknowledged being long-time argan oil users had their wri
    9·1 answer
  • -6(2y + 3) + 6 = 24.
    9·1 answer
  • Please help, I need this!
    5·1 answer
  • Be Precise What is the difference between a terminating decimal and a repeating <br> decimal?
    12·1 answer
  • Using Euler’s formular obtain trigonometric formulars for cos(1 + 2) and sin(1 + 2).
    6·1 answer
  • Suppose c and d vary inversely, and d=2 when c=17.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!