As the spring returns to it's equilibrium position, it performs
1/2 (4975 N/m) (0.097 m)² ≈ 23 J
while the gravitational force (opposing the block's upward motion) performs
-(0.244 kg) g<em> </em>(0.097 m) ≈ -2.3 J
of work on the block. By the work energy theorem, the total work done on the block is equal to the change in its kinetic energy:
23 J - 2.3 J = 1/2 (0.244 kg) v² - 0
where v is the speed of the block at the moment it returns to the equilibrium position. Solve for v :
v² = (23 J - 2.3 J) / (1/2 (0.244 kg))
v = √((23 J - 2.3 J) / (1/2 (0.244 kg)))
v ≈ 44 m/s
After leaving the spring, block is in free fall, and at its maximum height h it has zero vertical velocity.
0² - (44 m/s)² = 2 (-g) h
Solve for h :
h = (44 m/s)² / (2g)
h ≈ 2.3 m
Answer:
a. A = 0.1656 m
b. % E = 1.219
Explanation:
Given
mB = 4.0 kg , mb = 50.0 g = 0.05 kg , u₁ = 150 m/s , k = 500 N / m
a.
To find the amplitude of the resulting SHM using conserver energy
ΔKe + ΔUg + ΔUs = 0
¹/₂ * m * v² - ¹/₂ * k * A² = 0
A = √ mB * vₓ² / k
vₓ = mb * u₁ / mb + mB
vₓ = 0.05 kg * 150 m / s / [0.050 + 4.0 ] kg = 1.8518
A = √ 4.0 kg * (1.852 m/s)² / (500 N / m)
A = 0.1656 m
b.
The percentage of kinetic energy
%E = Es / Ek
Es = ¹/₂ * k * A² = 500 N / m * 0.1656²m = 13.72 N*0.5
Ek = ¹/₂ * mb * v² = 0.05 kg * 150² m/s = 1125 N
% E = 13.72 / 1125 = 0.01219 *100
% E = 1.219
Kinetic energy is energy of motion. Anything that's moving has it.
Anything that's not moving doesn't have it.
The only thing on this list of choices that's moving is the gymnast
doing a cartwheel. The swimmer, the basketball player, and the
horse are all just sitting or standing there.
Answer:
In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
I don’t know how ellipse change tho sorry
Fundamental frequency,
f=v2l=T/μ−−−−√2l
=(50)/0.1×10−3/10−22×0.6−−−−−−−−−−−−−−−−−−−√
=58.96Hz
Let, n th harmonic is the hightest frequency, then
(58.93)n = 20000
∴N=339.38
Hence, 339 is the highest frequency.
∴fmax=(339)(58.93)Hz=19977Hz.
<h3>
What is frequency?</h3>
In physics, frequency is the number of waves that pass a given point in a unit of time as well as the number of cycles or vibrations that a body in periodic motion experiences in a unit of time. After moving through a sequence of situations or locations and then returning to its initial position, a body in periodic motion is said to have experienced one cycle or one vibration. See also simple harmonic motion and angular velocity.
learn more about frequency refer:
brainly.com/question/254161
#SPJ4