1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dusya [7]
3 years ago
8

Can someone help Explain what an ellipse is, and how they can change.

Physics
1 answer:
yawa3891 [41]3 years ago
3 0

Answer:

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

I don’t know how ellipse change tho sorry

You might be interested in
When two balanced forces cancel each other, they are in?
emmainna [20.7K]
The forces are in equilibrium.
7 0
3 years ago
Astronauts often undergo special training in which they are subjected to extremely high centripetal accelerations. One device ha
egoroff_w [7]

The centripetal acceleration of an object is given by the relation,

Ac =V^2/R

where Ac = centripetal acceleration = 98 m/s^2

R = radius of rotation = 15 m

V = speed of astronaut

Hence, \frac{V^2}{15} =98

solving this we get, V = 38.34 m/s

3 0
3 years ago
Read 2 more answers
Calculate the slope for segment 2
sergiy2304 [10]

Answer:

23

Explanation:

The line starts at 31,  it then drops down to about 23. It then drops even  more to about 14. It then raises to 20 and then raises to 23.

Hope this helps!

5 0
3 years ago
The experimentation step of scientific inquiry involves _______. A. Analyzing data b. Drawing a conclusion c. Choosing variables
Anna11 [10]

Answer:

C- Choosing variables and controls

Explanation:

Correct on edge.

3 0
2 years ago
What is the importance of the x- y- Cartesian coordinate system in motion of an object in two dimensions?
ArbitrLikvidat [17]

Answer:

To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

Explanation:

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:

{\displaystyle {\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.}{\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.

The average velocity is always less than or equal to the average speed of an object.

In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

{\displaystyle {\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,}{\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,

where we may identify

{\displaystyle \Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt}\Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt

and

{\displaystyle \Delta t=t_{1}-t_{0}.}\Delta t=t_{1}-t_{0}.

Instantaneous velocity

{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}{\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integral of the velocity function v(t) is the displacement function x(t).

{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Relationship to acceleration

Although velocity is defined as the rate of change of position,

{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.}{\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.

From there, we can obtain an expression for velocity as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}

Constant acceleration

{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}{\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t

with v as the velocity at time t and u as the velocity at time t = 0. By combining this equation with the suvat equation x = ut + at2/2, i

{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}}{\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}.

{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}

{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}(2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}

{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}\therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})

4 0
3 years ago
Other questions:
  • What is the center of a tornado called A.the eye B. The center C. The middle road D. The vortex
    13·2 answers
  • Where would the temperature of the ocean surface water be the lowest hat
    10·2 answers
  • How do you know that a speedometer tells you the instantaneous speed of a car?
    15·1 answer
  • During times of stress, Yanira notices that her heart pounds a little faster than normal. What part of the brain is responsible
    6·2 answers
  • A 10 lb. cat needs 31⁄2 tablets that each contain 6 mg of a drug. what's the equivalent dose in mg/kg?
    8·1 answer
  • _____ is the densest planet.<br> Mercury<br> Venus<br> Earth<br> Mars
    12·2 answers
  • The diagram below shows the forces acting on a box. Describe the motion of the box. Calculate all forces
    13·1 answer
  • A 62 kg male ice skater is facing a 42 kg female ice skater. They are at rest on the ice. They push off each other and move in o
    13·1 answer
  • Marla made ice by freezing liquid water the freezerWhat did the freezer do to cause the change in the water?
    12·1 answer
  • A student investigated how length affects resistance of a wire.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!