Answer:
9.8m/s²
Explanation:
The acceleration of the ball thrown after leaving my hand is 9.8m/s². This will be the acceleration due to gravity on the body.
- Acceleration due to gravity is caused by the pull of the earth on a massive object.
- The value of this acceleration is 9.8m/s².
- As the ball nears the surface, it comes near zero.
In exothermic reactions, heat and light are released to the surrounding environment. On the other hand, in an endothermic reaction, heat is required and therefore it can be considered as a reactant.
- In exothermic reactions, light and heat are released into the environment (Option D).
- Exothermic reactions release energy in the form of heat or light.
- Combustion reactions are generally exothermic reactions.
- After an exothermic reaction takes place it is possible to observe that the energy of the products of the reaction is lesser than the energy of the reactants.
- The energy released in exothermic reactions is evidenced by the increase in temperature of the reaction.
Learn more in:
Answer:
2.5 N
because Average speed is equal to distance divided by time
Mesophyll only occurs in some plants, and not the usual C3 plants that everyone learns about. In fact, mesophyll is mainly used in photosynthesis - for its light dependent reactions (primary reactions). Therefore, I'd say it's c) the structure which stores glucose for later use.
Answer:
vf = 14.2176 m/s
Explanation:
Given
m = 4 Kg
viy = 7.00 ĵ m/s
Fx = 11.0 î N
t = 4.5 s
vf = ?
Using the Impulse - Momentum Theorem, we have
F*Δt = m*Δv ⇒ F*Δt = m*(vf - vi)
⇒ vf = (F*Δt + m*vi) / m
⇒ vf = (F*Δt + m*vi) / m
For <em>x-component</em>
⇒ vfx = (Fx*Δt + m*vix) / m = (11 N*4.5 s + 4 Kg*0 m/s) / (4 Kg)
⇒ vfx = 12.375 î m/s
For <em>y-component</em>
⇒ vfy = (Fy*Δt + m*viy) / m = (0 N*4.5 s + 4 Kg*7 m/s) / (4 Kg)
⇒ vfy = 7 ĵ m/s
Finally:
vf = √(vfx² + vfy²)
⇒ vf = √((12.375 m/s)² + (7 m/s)²)
⇒ vf = 14.2176 m/s