Answer: i dont know the answer to this qisetion
Step-by-step explanation:
Answer:
Explanation:
1)<u> Principal quantum number, n = 2</u>
- n is the principal quantum number and indicates the main energy level.
<u>2) Second quantum number, ℓ</u>
- The second quantum number, ℓ, is named, Azimuthal quantum number.
The possible values of ℓ are from 0 to n - 1.
Hence, since n = 2, there are two possible values for ℓ: 0, and 1.
This gives you two shapes for the orbitals: 0 corresponds to "s" orbitals, and 1 corresponds to "p" orbitals.
<u>3) Third quantum number, mℓ</u>
- The third quantum number, mℓ, is named magnetic quantum number.
The possible values for mℓ are from - ℓ to + ℓ.
Hence, the poosible values for mℓ when n = 2 are:
- for ℓ = 1, mℓ = -1, 0, or +1.
<u>4) Fourth quantum number, ms.</u>
- This is the spin number and it can be either +1/2 or -1/2.
Therfore the full set of possible states (different quantum number for a given atom) for n = 2 is:
- (2, 0, 0 +1/2)
- (2, 0, 0, -1/2)
- (2, 1, - 1, + 1/2)
- (2, 1, -1, -1/2)
- (2, 1, 0, +1/2)
- (2, 1, 0, -1/2)
- (2, 1, 1, +1/2)
- (2, 1, 1, -1/2)
That is a total of <u>8 different possible states</u>, which is the answer for the question.
Answer:
![\boxed{5 \cdot \sqrt{2} \cdot \sqrt[6]{5} }](https://tex.z-dn.net/?f=%5Cboxed%7B5%20%5Ccdot%20%5Csqrt%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%7D)
Step-by-step explanation:
![\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B250%7D%20%5Ccdot%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D)
![\sqrt{\sqrt[3]{10} } \implies (10^\frac{1}{3} )^\frac{1}{2} =10^\frac{1}{6} =\sqrt[6]{10}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D%20%5Cimplies%20%2810%5E%5Cfrac%7B1%7D%7B3%7D%20%29%5E%5Cfrac%7B1%7D%7B2%7D%20%3D10%5E%5Cfrac%7B1%7D%7B6%7D%20%3D%5Csqrt%5B6%5D%7B10%7D)
![\therefore \sqrt{\sqrt[3]{10} }=\sqrt[6]{10}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D%3D%5Csqrt%5B6%5D%7B10%7D)
![\text{Solving }\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }](https://tex.z-dn.net/?f=%5Ctext%7BSolving%20%7D%5Csqrt%5B3%5D%7B250%7D%20%5Ccdot%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D)

![\sqrt[3]{250}=\sqrt[3]{2\cdot 5^3}=5 \sqrt[3]{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B250%7D%3D%5Csqrt%5B3%5D%7B2%5Ccdot%205%5E3%7D%3D5%20%20%5Csqrt%5B3%5D%7B2%7D)
Once
![\sqrt[6]{2} \cdot \sqrt[6]{5} = \sqrt[6]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%3D%20%5Csqrt%5B6%5D%7B10%7D)
We have
![5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5}](https://tex.z-dn.net/?f=5%20%20%5Csqrt%5B3%5D%7B2%7D%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D)
We can proceed considering the common base of exponentials
![\sqrt[3]{2} \cdot \sqrt[6]{2} = 2^{\frac{1}{3}} \cdot 2^{\frac{1}{6} } = 2^{\frac{3}{6} } = 2^{\frac{1}{2} }=\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%3D%20%202%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ccdot%20%202%5E%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%20%20%3D%202%5E%7B%5Cfrac%7B3%7D%7B6%7D%20%7D%20%3D%202%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%5Csqrt%7B2%7D)
Therefore,
![5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5} = 5 \cdot \sqrt{2} \cdot \sqrt[6]{5}](https://tex.z-dn.net/?f=5%20%20%5Csqrt%5B3%5D%7B2%7D%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%3D%205%20%5Ccdot%20%5Csqrt%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D)
Answer:
B
Step-by-step explanation:
on edge