1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
3 years ago
9

Need help please its Calculus. Ill give the 5 stars as well.

Mathematics
1 answer:
algol133 years ago
6 0

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

You might be interested in
Can someone please help, I will give brainiest. If possible explain please.
lesantik [10]

Step-by-step explanation:

The angles (8x + 28) and (4x - 7) are supplementary to each other so we can write

(8x + 28) + (4x - 7) = 180 \Rightarrow 12x + 21 = 180

or

x = 13.25

Also, note that the angle (4x - 7) and \angle{TQS} are vertical angles, which means that they are equal to each other. Therefore,

\angle{TQS} = 4x - 7 = 4(13.25) - 7 = 46°

7 0
3 years ago
what has the most volume? tissue box, shoe box, cereal box, snack food box peoples please answer i need answer soon i must submi
aleksandr82 [10.1K]

Answer:

Cereal box

Step-by-step explanation:

Remember, Volume is a scalar quantity expressing the amount of three-dimensional space enclosed by a closed surface. For example, the space that a substance (solid, liquid, gas, or plasma) or 3D shape occupies or contains. Volume is often quantified numerically using the SI derived unit, the cubic metre. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. Three dimensional mathematical shapes are also assigned volumes. Volumes of some simple shapes, such as regular, straight-edged, and circular shapes can be easily calculated using arithmetic formulas. Volumes of complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. One-dimensional figures (such as lines) and two-dimensional shapes (such as squares) are assigned zero volume in the three-dimensional space.

7 0
2 years ago
Which of the points A (5, −3),B (−2, 4), C (0, 0),D (2, 1), E (−5, 2.5) belong to the graph of the direct variation y = 1/2 x ?
Gala2k [10]

Answer:

A (5,-3) does not belong

B (-2,4) does not belong

C (0,0) belongs

D (2,1) belongs

E (-5,2.5) does not belong

Step-by-step explanation:

To find the answer, you'll need to know

what is the number in half? If (x,y) is like

10,5 then that will belong.

3 0
3 years ago
Which of the following numbers are irrational?
sweet [91]

The number are 1/4 π and \sqrt[3]{9} are irrational number.

It is required to choose the numbers are irrational.

<h3>What is real number?</h3>

Real numbers are numbers that include both rational and irrational numbers. Rational numbers such as integers (-2, 0, 1), fractions(1/2, 2.5) and irrational numbers such as √3, π(22/7), etc., are all real numbers.

Given that:

The given option are

-2.3456 =-23456/10000

since, -2.3456 can be represented as rational numbers.

π is an infinite decimal, so it cannot be expressed as a rational number.  

So, 1/4 π is irrational number.

\sqrt[3]{9} is an irrational number.

2 + √16=2+4= 6 is a rational number.

Therefore, the number are 1/4 π and \sqrt[3]{9} are irrational number.

Learn more about real number here:

brainly.com/question/551408

#SPJ1

5 0
2 years ago
10 points need help asap​
prisoha [69]

Answer:

D

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • How many solutions are there to this equation 3(x-4)+5-x=2x-7
    13·1 answer
  • What is the perimeter of the quadrilateral?
    13·1 answer
  • The Deepwater Horizon oil spill resulted in 4.9 million barrels of oil spilling into the Gulf of Mexico. Each barrel of oil can
    5·1 answer
  • If x and y vary inversely and x=4 when y=1, find x when y = 10​
    7·2 answers
  • Maria has recently retired and requested an extra ​$444.00 per year in income. She has $ 5400 to invest in an​ A-rated bond that
    13·1 answer
  • The product of twice a number and 7 less than the number
    14·1 answer
  • 6 1⁄3 + 7 1⁄4 – 2 1⁄2 =
    6·1 answer
  • On a math exam containing 36 questions, there are
    7·1 answer
  • What is the slope of the line X=-3?
    7·2 answers
  • Question below
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!