1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
3 years ago
9

Need help please its Calculus. Ill give the 5 stars as well.

Mathematics
1 answer:
algol133 years ago
6 0

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

You might be interested in
Four bagels and eight muffins cost $16. Six bagels and five muffins cost $13.50 How much does a bagel cost? How much does a muff
Ivahew [28]

Answer:

Your friend is here to help you it's me nick okay the answer is sorry I forgot I'm just a stupid girl who knows nothing I'm sorry nick[cries] I tried but I forgot

Step-by-step explanation:

6 0
4 years ago
Juan is three times as old as Gabe and Gabe is six years older than Catherine. If the sum of their ages is 149, how old is each
cestrela7 [59]

Answer:

Juan = 93 years.

Gabe = 31 years.

Catherine = 25 years.

Step-by-step explanation:

Let the age of Juan = J

Let the age of Gabe = G

Let the age of Catherine = C

<em>Translating the word problem into an algebraic equation, we have;</em>

J = 3G ..........equation 1

G = C + 6 ........equation 2

J + G + C = 149 ........equation 3

<em>We would solve the linear equations by using the substitution method; </em>

<em>Substituting equation 2 into equation 1;</em>

J = 3(C + 6)

J = 3C + 18 ........equation 4

<em>Substituting equation 2 and equation 4 into equation 3;</em>

(3C + 18) + (C + 6) + C = 149

<em>Simplifying the equation, we have;</em>

5C + 24 = 149

5C = 149 - 24

5C = 125

C = \frac {125}{5}

C = 25 years.

To find G; from equation 2

G = C + 6

Substituting the value of "C" into equation 2, we have;

G = 25 + 6

G = 31 years.

To find J; from equation 1

J = 3G

Substituting the value of "G" into equation 1, we have;

J = 3 * 31

J = 93 years.

<em>Therefore, Juan is 93 years old, Gabe is 31 years old and Catherine is 25 years old. </em>

4 0
3 years ago
The variables x and y vary directly. Use the values to find the constant of proportionality and write an equation that relates x
Leya [2.2K]

Answer:

y = 4x

Step-by-step explanation:

If y is directly proportional to x (which is what I assume you are meaning in this question), this means that

y = kx, where k is the constant of proportionality.

To find k, we simply substitute in the given x and y values, and solve for k. i.e we to get:

8 = k x 2.

k = 8/2 = 4.  

so y = 4x

3 0
3 years ago
What is the area, in square centimeters, of the shape below?
Karolina [17]

Answer:

21.46 cm squared

Step-by-step explanation:

3.8x5.8=21.46

8 0
3 years ago
Which statement most reasonably explains the hours 0 texts were sent
lawyer [7]

Answer:

I think its the third one sorry if I got it wrong I tried my best

5 0
3 years ago
Other questions:
  • Write expression below. Subtract 5 from 13 and then divide the difference by 9
    12·2 answers
  • Can someone plz show me how to solve this
    14·1 answer
  • Find the measure of ∠C.<br> A) 10° <br> B) 14° <br> C) 20° <br><br> D) 30°
    8·1 answer
  • True or false? Postulates are statements that are accepted without question or justification
    5·2 answers
  • Suppose that you have torn a tendon and are facing surgery to repair it. the orthopedic surgeon explains the risks to you. infec
    13·1 answer
  • Kate walks half a mile to the library. How many yards douse she walk?
    13·2 answers
  • Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the
    9·1 answer
  • Help me please answer thanks
    7·1 answer
  • HELP ME PLEASE !!!!!!!
    6·1 answer
  • 20 plants were measured and their height recorded in cm.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!