Answer:
D, E
Step-by-step explanation:
The applicable formula is ...
s = rθ
so, for θ = 1.5, the arc length is 1.5 times the radius. The true statements are ...
D) The length of the arc defined by the angle is 1.5 times longer than the radius.
E) The ratio of arc length to radius is 1.5.
Answer:
Therefore the value of y(1)= 0.9152.
Step-by-step explanation:
According to the Euler's method
y(x+h)≈ y(x) + hy'(x) ....(1)
Given that y(0) =3 and step size (h) = 0.2.

Putting the value of y'(x) in equation (1)

Substituting x =0 and h= 0.2
![y(0+0.2)\approx y(0)+0.2[0\times y(0)-\frac12 (y(0))^2]](https://tex.z-dn.net/?f=y%280%2B0.2%29%5Capprox%20y%280%29%2B0.2%5B0%5Ctimes%20y%280%29-%5Cfrac12%20%28y%280%29%29%5E2%5D)
[∵ y(0) =3 ]

Substituting x =0.2 and h= 0.2
![y(0.2+0.2)\approx y(0.2)+0.2[(0.2)^2\times y(0.2)-\frac12 (y(0.2))^2]](https://tex.z-dn.net/?f=y%280.2%2B0.2%29%5Capprox%20y%280.2%29%2B0.2%5B%280.2%29%5E2%5Ctimes%20y%280.2%29-%5Cfrac12%20%28y%280.2%29%29%5E2%5D)
![\Rightarrow y(0.4)\approx 2.7+0.2[(0.2)^2\times 2.7- \frac12(2.7)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.4%29%5Capprox%20%202.7%2B0.2%5B%280.2%29%5E2%5Ctimes%202.7-%20%5Cfrac12%282.7%29%5E2%5D)

Substituting x =0.4 and h= 0.2
![y(0.4+0.2)\approx y(0.4)+0.2[(0.4)^2\times y(0.4)-\frac12 (y(0.4))^2]](https://tex.z-dn.net/?f=y%280.4%2B0.2%29%5Capprox%20y%280.4%29%2B0.2%5B%280.4%29%5E2%5Ctimes%20y%280.4%29-%5Cfrac12%20%28y%280.4%29%29%5E2%5D)
![\Rightarrow y(0.6)\approx 1.9926+0.2[(0.4)^2\times 1.9926- \frac12(1.9926)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.6%29%5Capprox%20%201.9926%2B0.2%5B%280.4%29%5E2%5Ctimes%201.9926-%20%5Cfrac12%281.9926%29%5E2%5D)

Substituting x =0.6 and h= 0.2
![y(0.6+0.2)\approx y(0.6)+0.2[(0.6)^2\times y(0.6)-\frac12 (y(0.6))^2]](https://tex.z-dn.net/?f=y%280.6%2B0.2%29%5Capprox%20y%280.6%29%2B0.2%5B%280.6%29%5E2%5Ctimes%20y%280.6%29-%5Cfrac12%20%28y%280.6%29%29%5E2%5D)
![\Rightarrow y(0.8)\approx 1.6593+0.2[(0.6)^2\times 1.6593- \frac12(1.6593)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.8%29%5Capprox%20%201.6593%2B0.2%5B%280.6%29%5E2%5Ctimes%201.6593-%20%5Cfrac12%281.6593%29%5E2%5D)

Substituting x =0.8 and h= 0.2
![y(0.8+0.2)\approx y(0.8)+0.2[(0.8)^2\times y(0.8)-\frac12 (y(0.8))^2]](https://tex.z-dn.net/?f=y%280.8%2B0.2%29%5Capprox%20y%280.8%29%2B0.2%5B%280.8%29%5E2%5Ctimes%20y%280.8%29-%5Cfrac12%20%28y%280.8%29%29%5E2%5D)
![\Rightarrow y(1.0)\approx 0.8800+0.2[(0.8)^2\times 0.8800- \frac12(0.8800)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%281.0%29%5Capprox%20%200.8800%2B0.2%5B%280.8%29%5E2%5Ctimes%200.8800-%20%5Cfrac12%280.8800%29%5E2%5D)

Therefore the value of y(1)= 0.9152.
Answer:
-6/8
Step-by-step explanation:
The rate of change is the same as the slope (I don't know if you have learned that term yet), but basically its the change in y's over the change in x's. to find this out, all you have to do is count from the point on the graph that is the farthest right (in this case, (6,1)), up to the y coordinate of the point farthest to the left (-2, 7) which is 6, and then count the number of spaces between the x coordinates, which is 8. put the rise (up and down count) over the run (horizontal count) in a fraction form, which gives you 6/8, and then notice how the line is pointing towards the bottom RIGHT hand corner making the line negative, so you need to make the rate of change negative, giving you the final answer of -6/8.
Hello! And thank you for your question!
First use the rule: A/b x c/d = ac/bd
3 x 2 over 5 x 3
Simplify 3 x 2:
6 over 5 x 3
Simplify 5 x 3:
6/15
Simplify further:
2/5
Final Answer:
2/5