<span>To solve these GCF and LCM problems, factor the numbers you're working with into primes:
3780 = 2*2*3*3*3*5*7
180 = 2*2*3*3*5
</span><span>We know that the LCM of the two numbers, call them A and B, = 3780 and that A = 180. The greatest common factor of 180 and B = 18 so B has factors 2*3*3 in common with 180 but no other factors in common with 180. So, B has no more 2's and no 5's
</span><span>Now, LCM(180,B) = 3780. So, A or B must have each of the factors of 3780. B needs another factor of 3 and a factor of 7 since LCM(A,B) needs for either A or B to have a factor of 2*2, which A has, and a factor of 3*3*3, which B will have with another factor of 3, and a factor of 7, which B will have.
So, B = 2*3*3*3*7 = 378.</span>
The first step to solving this problem is Multiplying In(x-1).
9514 1404 393
Answer:
Step-by-step explanation:
The decay factor is 1 -25% = 0.75 per hour, so the exponential equation can be written ...
r(t) = 1450·0.75^t . . . . . milligrams remaining after t hours
__
a) After 4 hours, the amount remaining is ...
r(4) = 1450·0.75^4 ≈ 458.79 . . . mg
About 459 mg will remain after 4 hours.
__
b) To find the time it takes before the amount remaining is less than 5 mg, we need to solve ...
r(t) < 5
1450·0.75^t < 5 . . . . use the function definition
0.75^t < 5/1450 . . . . divide by 1450
t·log(0.75) < log(1/290) . . . . . take logarithms (reduce fraction)
t > log(1/290)/log(0.75) . . . . . divide by the (negative) coefficient of t
t > 19.708
It will take about 20 hours for the amount of the drug remaining to be less than 5 mg.
If you have to compare two shapes you basically count the number of shapes there are of each type then you say for example 6:4. If they ask you to give the number of shapes to the number of shapes there are you count all the shapes and then you count the shape they asked you to find and then you will get something like 4:15