This is a refreshing question!
We are given that
f(r)=ar+b, and
Sum f(r) =125 for r=1 to 5
Sum f(r) = 475 for r=1 to 10.
and we know, using Gauss's method, that
G(n)=sum (1,2,3.....n) = n(n+1)/2 or
G(n)=n(n+1)/2
Sum f(r) =125 for r=1 to 5
=>
sum=a(sum of 1 to 5) + 5b => G(5)a+5b=125 [G(5)=15]
15a+5b=125 ...................................................(1)
Similarly, Sum f(r) = 475 for r=1 to 10 => G(10)a+5b=475 [G(10)=55]
=>
55a+10b=475.................................................(2)
Solve system of equations (1) and (2)
(2)-2(1)
55-2(15)a=475-2(125) => 25a=225 =>
a=9
Substitute a=9 in 1 => 15(9)+5b=125 => 5b=-10
b=-2
Substitute a and b into f(r),
f(r)=9r-2
check: sum f(r), r=1,5 = (9-2)+(18-2)+(27-2)+(36-2)+(45-2)=135-10=125 [good]
We define the sum of f(r) for r=1 to n as
S(n)=sum f(r) for r=1 to n = 9(sum 1,2,3....n)-2n = 9n(n+1)/2-2n = 9G(n)-2n
S(n)=9n(n+1)/2-2n
checks:
S(5)=9(15)-2(5)=135-10=125 [good]
S(10)=9(55)-2(10)=495-20=475 [good]
Hence
(a)
S(n)=sum f(r) for r=1,n
= 9(sum i=1,n)+n(-2)
= 9(n(n+1)/2 -2n
=(9(n^2+n)/2) -2n
(b) sum f(r) for i=8,18
=sum f(r) for i=1,18 - sum f(r) for i=1,7
=S(18)-S(7)
=(9(18^2-18)/2-2(18))-(9(7^2-7)/2-2(7))
=1503-238
=1265
Answer:
x^3 - 3x^2 - 3x + 9 + (-36/(x+3))
OR
x^3 - 3x^2 - 3x + 9 - (36/(x+3))
Step-by-step explanation:
First set the divisor equal to 0:
x + 3 = 0
Subtract 3 from both sides
x = -3
This is what you'll divide the dividend by in synthetic division.
Take the coefficents of each term in the dividend. Do not forget the 0 placeholders:
x^4 + 0x^3 - 12x^2 + 0x -9
Coefficents: 1. 0. -12. 0 -9.
Please see the image for the next steps.
The remainder is -36. Put the remainder over the divisor and add it to the polynomial (shown in image)
-36/(x+3)
Answer:
, ig
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
There has to be two variables it's being compared to, in which case this is the blood sugar level and the amount of sugar
The mode is 85, because it is the most occurring in the data set.
hope that helps :)