The current required to accumulate the 1.22 grams of nickel in 0.5 hours is 2.23 A.
<h3>What is current?</h3>
The current is given as the product of the charge with time. In the electrochemical analysis of the nickel, there will be a reduction of the nickel ion to nickel. The formation is given as:

There is the deposition of 1 mole of Ni with 2 electrons transfer. The transfer of charge for 1 mole that is 58.7 grams Nickel is:

The mass of Ni to be deposited is 1.22 grams. The charge required is given as:

The current required to transfer 4010.7 C of charge in 1800 seconds is given as:

Thus, the current required to accumulate the 1.22 grams of nickel in 0.5 hours is 2.23 A.
Learn more about current, here:
brainly.com/question/23063355
#SPJ4
Answer:
25.08 grams of O₂ are needed to react with 8.15 g of C₂H₂.
Explanation:
The balanced reaction is:
2 C₂H₂ + 5 O₂ → 4 CO₂ + 2 H₂O
By reaction stoichiometry, the following amounts of moles of each compound participate in the reaction:
- C₂H₂: 2 moles
- O₂: 5 moles
- CO₂: 4 moles
- H₂O: 2 moles
The molar mass of each compound is:
- C₂H₂: 26 g/mole
- O₂: 32 g/mole
- CO₂: 44 g/mole
- H₂O: 18 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- C₂H₂: 2 moles* 26 g/mole= 52 g
- O₂: 5 moles* 32 g/mole= 160 g
- CO₂: 4 moles* 44 g/mole= 176 g
- H₂O: 2 moles* 18 g/mole= 36 g
Then you can apply the following rule of three: if by stoichiometry 52 grams of C₂H₂ react with 160 grams of O₂, 8.15 grams of C₂H₂ react with how much mass of O₂?

mass of O₂= 25.08 grams
<u><em>25.08 grams of O₂ are needed to react with 8.15 g of C₂H₂.</em></u>
Molar mass of nitric acid (HNO3) =atomic mass of hydrogen + atomic mass of nitrogen +3x atomic mass of oxygen . The molar mass of nitric acid (HNO3) is 63.0144 gram per mole, but you have 3.4 moles. Therefore; the answer is 63.0144 g/mole x 3.4 moles = 214.24896 grams.
Decreases as you move left to right