There are no illustrations, so it is impossible to answer this question. I apologise.
Answer:
QA=1.2
Step-by-step explanation:
AM is the total line segment and QM is one of two parts that the line was separated into.
Simply subtract the segment (QM) from the total (AM) to find the missing piece (QA)
So you would have 8.5-7.3, which is equal to 1.2
Therefore, QA=1.2
Hope this helps!
Answer:
The longest braking distance one of these cars could have and still be in the bottom 1% is of 116.94 feet.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The braking distances of a sample of cars are normally distributed, with a mean of 129 feet and a standard deviation of 5.18 feet.
This means that 
What is the longest braking distance one of these cars could have and still be in the bottom 1%?
This is the 1st percentile, which is X when Z has a pvalue of 0.01, so X when Z = -2.327.




The longest braking distance one of these cars could have and still be in the bottom 1% is of 116.94 feet.
The x-coordinates are -4 and 0.