To find W⊥, you can use the Gram-Schmidt process using the usual inner-product and the given 5 independent set of vectors.
<span>Define projection of v on u as </span>
<span>p(u,v)=u*(u.v)/(u.u) </span>
<span>we need to proceed and determine u1...u5 as: </span>
<span>u1=w1 </span>
<span>u2=w2-p(u1,w2) </span>
<span>u3=w3-p(u1,w3)-p(u2,w3) </span>
<span>u4=w4-p(u1,w4)-p(u2,w4)-p(u3,w4) </span>
<span>u5=w5-p(u4,w5)-p(u2,w5)-p(u3,w5)-p(u4,w5) </span>
<span>so that u1...u5 will be the new basis of an orthogonal set of inner space. </span>
<span>However, the given set of vectors is not independent, since </span>
<span>w1+w2=w3, </span>
<span>therefore an orthogonal basis cannot be found. </span>
The answer is 3.814 but if you wanna round to the nearest hundredth then it’s 3.81
Answer:
A prime numbers are numbers which have only two factor
Answer:
here:
1. -9
2. -28
3. 54
4. -100
5. -60
6. -0
7. 49
8. -135
9. -96
10. 300
11. -153
12. -192
THIS TOOK LONG BECAUSE I DID A LONG ONE BUT THEN I MADE IT SHORTER. :D