Plants do not grow near the old copper mine because of the excess copper deposited in them impairs cellular processes and inhibits plant growth.
What are micronutrients?
These are required by plants in much smaller quantities less than 1% of the dry weight but are necessary for growth and development. There are 7 essential plant nutrients like boron (B), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), molybdenum (Mo), and, chlorine (Cl).
Copper activates some enzymes in plants that are involved in lignin synthesis and are required in the process of photosynthesis.
Excess copper causes reduced seed germination, low shoot vigour, and lower iron availability. A deficiency of copper can lead to increased to susceptibility to diseases like ergot, which can cause significant loss in the yield.
Plants growing in the old copper mine have the excess deposition of copper in one place which affects the germination of seeds hence it is found difficult to grow in the old copper mine.
Plants can grow easily in a place that is further away from the old copper mine. Because there is a high concentration of copper dissolved in water in the soil, this helps the plant to grow by exhibiting the photosynthesis process.
Learn more about micronutrients from the link given below:
brainly.com/question/7411332
#SPJ1
Answer:
During transcription, only one strand of DNA is usually copied. This is called the template strand, and the RNA molecules produced are single-stranded messenger RNAs (mRNAs). The DNA strand that would correspond to the mRNA is called the coding or sense strand
Explanation:
Answer;
DNA replication is semi-conservative.
The meselson-stahl experiment supported the hypothesis that DNA replication is semi-conservative.
Explanation;
The Meselson-Stahl experiment was an experiment by Meselson and Stahl that proved that the semi-conservative model by Watson and Crick was correct.
DNA replication is semi-conservative in the sense that the new helices formed after replication contain, one new DNA strand and one old strand from the parent DNA molecule.
Answer: The elastic connective tissue
Explanation: Allow stretched tissues to recoil as pressure is reduced