A dissection microscope<span> is light illuminated. The image that appears is three </span>dimensional<span>. It is used for dissection to get a better look at the larger specimen. You cannot see individual cells because it has a low magnification. Or just call it a dissecting microscope</span>
A. The process of photosynthesis is energy-storing because the process converts light energy into chemical energy, which is stored in the bonds of glucose.
Answer:
tropical, temperate, and polar
This membrane mimics the plasma membrane that is around animal cells. In order to explore how water moves in and out of a cell, one cell was weighed and then submerged in hypertonic solution. The other egg was weighted and submerged in hypotonic solution. It was predicted that the egg submerged in hypertonic solution would decrease in mass. It was predicted that the egg submerged in hypotonic solution would increase in mass.
Explanation:
The outermost covering of an animal cell is the plasma membrane. It is a selectively permeable membrane that allows only selective molecules to pass through it.
A solution having higher concentration of solute than the cell cytoplasm is called a hypertonic solution.
A solution having lower concentration of solute than the cell cytoplasm is called the hypotonic solution.
The movement of water molecules from the region of its higher concentration to the region of its lower concentration through a semipermeable membrane is called osmosis.
A cell placed in hypertonic solution will undergo exosmosis so it will lose water and its mass will decrease.
A cell placed in hypotonic solution will undergo endosmosis of water so it will gain water and its mass will increase.
Answer:
(d) Electrical-->Chemical-->Electrical
Explanation:
A nerve impulse is the transmission of an electrical change along the neuron's membrane from the point at which it is stimulated (synapse). The normal direction of impulse in the body is from the cell body to the axon. This nerve impulse, or action potential, is a sudden and rapid change in the transmembrane potential difference.
Normally, the membrane of the neuron is polarized at rest, which means that the ionic constitution of the medium internal to the membrane is different from the external medium, which generates different electrical charges in one medium and the other, so this difference, ie , the potential during rest is negative (-70 mV). The action potential thus consists of a rapid reduction of membrane negativity to 0mV and inversion of this potential to about + 30mV, followed by a rapid return to values slightly more negative than the resting potential of -70mV.
Nervous impulse or action potential, therefore, is a phenomenon of an electrochemical nature and occurs due to changes in the permeability of the neuron membrane. These permeability modifications allow ions to pass across the membrane. Since ions are electrically charged particles, changes also occur in the electric field generated by these charges.
Thus, we can say that the correct answer to this question is: Electrical -> Chemistry -> Electrical