Evaluate ab+bc+ca . If a²+b²+c²=50 and a+b+c=12
2 answers:
Answer:
ab + bc + ca = 47
Step-by-step explanation:
Using the algebraic identity
(a + b + c) = a² + b² + c² + 2(ab + bc + ca) , then
12² = 50 + 2(ab + bc + ca)
144 = 50 + 2(ab + bc + ca) ← subtract 50 from both sides
94 = 2(ab + bc + ca) ← divide both sides by 2
47 = ab + bc + ca
Answer:
ab+bc+ac=47
Step-by-step explanation:
(a+b+c)=12
Square both sides
a^2+b^2+c^2+2(ab+bc+ac)=144
2(ab+bc+ac)=94
ab+bc+ac=47
You might be interested in
Answer:
Step-by-step explanation:
use the distance formula.
x1=-1
x2=1
y1=4
y2=-2
d=√((x2-x1)^2+(y2-y1)^2)
d=√(30) or 5.4772
Answer:
4.5
Step-by-step explanation:
3^2=9
1/2*9=4.5
The answer is 2.6. I could be wrong.
Answer:
2 solutions
Step-by-step explanat
ion:|2x-3|-|3x-2|=0
<=>|2x-3|=|3x-2|
<=>2x-3=3x-2
Or 2x-3=-3x+2
<=>2x-3x=-2+3
or 2x+3x=2+3
<=>x=-1
Or x=1
-4(2n-5)=-28
-8n+20=-28
-8n=-48
n=6