<h3>Answer: Choice C</h3>
RootIndex 12 StartRoot 8 EndRoot Superscript x
12th root of 8^x = (12th root of 8)^x
![\sqrt[12]{8^{x}} = \left(\sqrt[12]{8}\right)^{x}](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B8%5E%7Bx%7D%7D%20%3D%20%5Cleft%28%5Csqrt%5B12%5D%7B8%7D%5Cright%29%5E%7Bx%7D)
=========================================
Explanation:
The general rule is
![\sqrt[n]{x} = x^{1/n}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B1%2Fn%7D)
so any nth root is the same as having a fractional exponent 1/n.
Using that rule we can say the cube root of 8 is equivalent to 8^(1/3)
![\sqrt[3]{8} = 8^{1/3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B8%7D%20%3D%208%5E%7B1%2F3%7D)
-----
Raising this to the power of (1/4)x will have us multiply the exponents of 1/3 and (1/4)x like so
(1/3)*(1/4)x = (1/12)x
In other words,


-----
From here, we rewrite the fractional exponent 1/12 as a 12th root. which leads us to this
![8^{(1/12)x} = \sqrt[12]{8^{x}}](https://tex.z-dn.net/?f=8%5E%7B%281%2F12%29x%7D%20%3D%20%5Csqrt%5B12%5D%7B8%5E%7Bx%7D%7D%20)
![8^{(1/12)x} = \left(\sqrt[12]{8}\right)^{x}](https://tex.z-dn.net/?f=8%5E%7B%281%2F12%29x%7D%20%3D%20%5Cleft%28%5Csqrt%5B12%5D%7B8%7D%5Cright%29%5E%7Bx%7D%20)
Answer:
(Hope this helps can I pls have brainlist (crown) ☺️)
Step-by-step explanation:
In pic
Answer:
2x^2 +2x-4
——————
2x^2-4x+2
Factor out 2 from the expression
2(x^2+x-2)
—————-
2(x^2-2x+1)
Write x as a difference
2(x^2x-x-2)
—————-
2(x^2-2x+1)
Use a^2-2ab+b^2=(ab)^2
2(x^2x-x-2)
—————-
2(x-1)^2
Reduce the fraction with 2
x^2x-x-2
—————-
(x-1)^2
Factor out x from the expression
X*(x^2)-x-2
—————-
(x-1)^2
Factor out negative sign from the expression
X*(x+2)-(x-2)
—————-
(x-1)^2
Factor out x+2 from the expression
(x+2)(x-1)
—————-
(x-1)^2
Simplify the expression
x+2
——
x-1
Answer:
The equation would be:

In the attachment!!!
<em>Hope this helps!!!</em>
<em>
</em>