The answer may be, Replication, but I am unsure.
Answer:
1. fragmentation- genetically identical
2. budding- genetically identical
3. haploid cells from two different mycelia fuse to form a zygote- genetically distinct
4. one hyphae creates spores through mitosis- genetically identical
Explanation:
1) Fragmentation is a form of asexual reproduction i.e. one parent, employed by certain organisms including fungi in which a FRAGMENT breaks off from the single parent to produce new cells. Since it is an asexual reproduction, the resulting cells will be GENETICALLY IDENTICAL.
2) Budding is another form of asexual reproduction that fungi undergoes e.g yeast. In the budding process, buds develop on the parent cell and later grow into mature cells that are GENETICALLY IDENTICAL to the parent cell.
3) In fungi, two different mycelia can produce haploid sex cells via the process of meiosis, which then fuse to produce a ZYGOTE. This method is a sexual means of reproduction. Hence, the zygote formed will be GENETICALLY DISTINCT from the parent.
4) Hyphae (threadlike filaments) of a fungi can via MITOTIC DIVISION produce spores, which then germinates under favorable conditions and grows into a new fungus. This new fungus cell is GENETICALLY IDENTICAL to the parent hyphae.
I have searched everywhere, but I have not found the proposals of the question, but I will explain to you what is the endoplasmic reticulum so that you can answer it.
The endoplasmic reticulum is a eukaryotic organelle located in the cytoplasm.
The endoplasmic reticulum is a network of membrane tubules (often interconnected) scattered throughout the cytoplasm of eukaryotic cells. Its membrane, which alone represents more than half of the cellular membrane system, is in contact with the nuclear envelope.
The endoplasmic reticulum can be:
Granular (or rough) (RER) that is to say associated with ribosomes.
Smooth (SER).
The granular endoplasmic reticulum is the place of synthesis (in the associated ribosomes) of the proteins secreted outside the cell and of the proteins and lipids constituting the membranes of the cellular organelles. Golgi, lysosomes, mitochondria, nucleus, ribosomes, vesicles ...). It participates in the correct folding of the proteins that have just been synthesized.
The smooth endoplasmic reticulum participates in cellular metabolism, synthesizing lipids and storing calcium.
<u><em>The nitrogenous base</em></u> is the central information carrying part of the nucleotide structure. These molecules, which have different exposed functional groups, have differing abilities to interact with each other.
<u><em>The second portion of the nucleotide is the sugar.</em></u> Regardless of the nucleotide, the sugar is always the same. The difference is between DNA and RNA. In DNA, the 5-carbon sugar is deoxyribose, while in RNA, the 5-carbon sugar is ribose. This gives genetic molecules their names; the full name of DNA is deoxyribonucleic acid, and RNA is ribonucleic acid.
<u><em>The last part of nucleotide structure, the phosphate group</em></u>, is probably familiar from another important molecule ATP. Adenosine triphosphate, or ATP, is the energy molecule that most life on Earth relies upon to store and transfer energy between reactions. ATP contains three phosphate groups, which can store a lot of energy in their bonds. Unlike ATP, the bonds formed within a nucleotide are known as phosphodiester bonds, because they happen between the phosphate group and the sugar molecule.