Answer:
45.89
Step-by-step explanation:
This is what is the answer
Answer:
B. -7
Step-by-step explanation:
f(x) = 4x + 5
To find the value of f(-3), replace all the x's in f(x) with -3.
f(x) = 4x + 5
f(-3) = 4(-3) + 5
f(-3) = -12 + 5
f(-3) = -7.
This makes your answer B, -7.
Answer:
1. reflection across x-axis
2. translation 6 units to the right and 3 units up (x+6,y+3)
Step-by-step explanation:
The trapezoid ABCD has it vertices at points A(-5,2), B(-3,4), C(-2,4) and D(-1,2).
First transformation is the reflection across the x-axis with the rule
(x,y)→(x,-y)
so,
- A(-5,2)→A'(-5,-2)
- B(-3,4)→B'(-3,-4)
- C(-2,4)→C'(-2,-4)
- D(-1,2)→D'(-1,-2)
Second transformation is translation 6 units to the right and 3 units up with the rule
(x,y)→(x+6,y+3)
so,
- A'(-5,-2)→E(1,1)
- B'(-3,-4)→H(3,-1)
- C'(-2,-4)→G(4,-1)
- D'(-1,-2)→F(5,1)
In this case we are dealing with the pythagorean theorm involving right angled triangles. This theorm states that a^2 + b^2 = c^2 which means the square of the hypotenuse (side c, opposite the right angle) is equal to the square of the remaining two sides.
In this case we will say that a = 3963 miles which is the radius of the earth. c is equal to the radius of the earth plus the additional altitude of the space station which is 250 miles; therefore, c = 4213 miles. We must now solve for the value b which is equal to how far an astronaut can see to the horizon.
(3963)^2 + b^2 = (4213)^2
b^2 = 2,044,000
b = 1430 miles.
The astronaut can see 1430 miles to the horizon.