Answer:
1
Step-by-step explanation:
√4x+1=3
√4x = 3 - 1
√4x = 2
squaring both sides,
(√4x)² = 2²
4x = 4
x = 4/4
x = 1
------------------------------------------------------------------------------------------
Equation
------------------------------------------------------------------------------------------
y = -3x - 9
------------------------------------------------------------------------------------------
Option 1
------------------------------------------------------------------------------------------
If I substitute x = -9, I should get y = 0
When x = -9
y = -3 (-9) - 9
= 18 (I did not get 0, wrong)
------------------------------------------------------------------------------------------
Option 2
------------------------------------------------------------------------------------------
If I substitute x = -3, I should get y = 0
y = -3(-3) - 9
y = 9 - 9
y = 0 (Yes, I got 0, correct)
------------------------------------------------------------------------------------------
Option 3
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -3
y = -3 (0) - 9
y = 0 - 9
y = -9 (I did not get -3, wrong)
------------------------------------------------------------------------------------------
Option 4
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -9
y = -3 (0) - 9
y = 0 - 9
y = -9 (Yes, I got -9, correct)
------------------------------------------------------------------------------------------
Answer: (-3, 0) and (0, 9) are ordered pairs of the equation (Answer B, D)
------------------------------------------------------------------------------------------
Answer:
x = 8
Step-by-step explanation:
5(x-2)=30
Distribute
5x- 10 = 30
Add 10 to each side
5x-10+10 = 30+10
5x= 40
Divide by 5
5x/5=40/5
x = 8
Answer:
13 units
Step-by-step explanation:
Use the distance formula, d =
, where (x2, y2) and (x1, y1) are two different points on the line.
Plug in the values:
d = 
d = 
d = 
d = 
d = 
d = 13