1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
11

Given then functions f(x)= 2x -1 and g(x) =2x +4, which operation results in the largest coefficient on the x term?

Mathematics
2 answers:
denpristay [2]3 years ago
8 0

Answer:multiplication.


Step-by-step explanation:



RideAnS [48]3 years ago
5 0
When two equations are given, there are many operations in which you can do involving both as long as the variables (independent and dependent) are similar to both equations. In this case, we can directly apply operations to both equations since both functions are functions of x. The largest coefficient of the x term would be achieved by multiplication since using distribution property, the coefficient of x would be 6. Subtraction or addition would only lead to less number (0 and 4 respectively). Division is not applicable as there are no factors similar to both functions which can be cancelled to each other. Answer then to this problem is multiplication.
You might be interested in
What number should be added to both sides of the equation to complete the square?
AnnyKZ [126]
I think its 2 cuz i think its 6^2
5 0
3 years ago
A movie theater charges $6.50 for matinee showings and $8.75 for evening showings. Yesterday the theater sold 378 tickets for a
harina [27]
The number of matinee tickets sold would be 168
6 0
3 years ago
Read 2 more answers
Can Someone Evaluate This
Murrr4er [49]
The answer is B. 9
Hope this helps
6 0
3 years ago
Read 2 more answers
Which of the following numbers is closest to 6?
vichka [17]
B because all the others are further from 6
5 0
2 years ago
Read 2 more answers
Helppppppppppp:)))))))))
Whitepunk [10]

Hi there!

We are given the set of ordered pairs below:

\large \boxed{(3, - 1),(2, - 2),(0,2),(2,1)}

1. What is the domain?

  • Domain is a set of all x-values in one set of ordered pairs. So what are the x-values that I am talking about? In ordered pairs, we define x and y which both have relation to each others which we can write as (x,y). That's right, the domain is set of all x-values from ordered pairs.

Therefore, we gather only x-values from (x,y). Hence, the domain is {3,2,0,2}. Whoops! Something is not right. As we learn in Set Theory that we don't write the same or repetitive in a set. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>c</u><u>t</u><u>u</u><u>a</u><u>l</u><u> </u><u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>0</u><u>,</u><u>2</u><u>,</u><u>3</u><u>}</u>

2. What is the range?

  • Because domain is set of all x-values. Then what do you think the range is? That's right! The range is <u>s</u><u>e</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>a</u><u>l</u><u>l</u><u> </u><u>y</u><u>-</u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>s</u><u>.</u> If you got this right before looking up the underlined words then a handclap for you! So how do we find range? Simple, we just do like finding the domain in the Q1, except we gather the y-values in (x,y) instead and make sure that we don't write same number!

Therefore, gather y-values from the ordered pairs. Hence, <u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>n</u><u>g</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>{</u><u>-</u><u>2</u><u>,</u><u>-</u><u>1</u><u>,</u><u>1</u><u>,</u><u>2</u><u>}</u>

3. Is the relation a function?

  • All functions are relations but not all relations are functions. Function is a set of ordered pairs where <u>d</u><u>o</u><u>m</u><u>a</u><u>i</u><u>n</u><u> </u><u>i</u><u>s</u><u> </u><u>n</u><u>o</u><u>t</u><u> </u><u>r</u><u>e</u><u>p</u><u>e</u><u>t</u><u>i</u><u>t</u><u>i</u><u>v</u><u>e</u><u> </u><u>o</u><u>r</u><u> </u><u>i</u><u>n</u><u> </u><u>a</u><u> </u><u>s</u><u>e</u><u>t</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u>r</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u>n</u><u>o</u><u>t</u><u> </u><u>b</u><u>e</u><u> </u><u>m</u><u>o</u><u>r</u><u>e</u><u> </u><u>t</u><u>h</u><u>a</u><u>n</u><u> </u><u>o</u><u>n</u><u>e</u><u> </u><u>s</u><u>a</u><u>m</u><u>e</u><u> </u><u>v</u><u>a</u><u>l</u><u>u</u><u>e</u><u>.</u> Consider the following relation: (1,1),(1,2) - Oh, looks like in a set of ordered pairs, there are two same domains which make it only a relation, and not a function. On the other hand, (1,1),(2,2) - Looking good! No same or repetitive domain, making it indeed a function.

Consider the domain from Q1 and see if there are two same values of x in a set. Looks like the relation is not a function since there are same x-values which are 2 in a set, making it only a relation. Hence, the relation is not a function.

These are all 3 answers along with an explanation. Let me know if you have any doubts regarding Relations and Functions.

<em>F</em><em>r</em><em>o</em><em>m</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Q</em><em>1</em><em>'</em><em>s</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>,</em><em> </em><em>t</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>a</em><em>r</em><em>e</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em>s</em><em>,</em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>c</em><em>h</em><em>o</em><em>o</em><em>s</em><em>e</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>b</em><em>o</em><em>l</em><em>d</em><em> </em><em>t</em><em>e</em><em>x</em><em>t</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>u</em><em>n</em><em>d</em><em>e</em><em>r</em><em>l</em><em>i</em><em>n</em><em>e</em><em>)</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>n</em><em>o</em><em>t</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>f</em><em>i</em><em>r</em><em>s</em><em>t</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>(</em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>n</em><em>e</em><em> </em><em>w</em><em>i</em><em>t</em><em>h</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em><em>2</em><em>'</em><em>s</em><em>)</em><em>.</em><em> </em>

Good luck on your assignment, have a nice day!

4 0
3 years ago
Other questions:
  • How would you explain the relationship between an exponential function and a logarithmic function to an English major you are tu
    6·1 answer
  • Please help!
    14·2 answers
  • Variable y varies directly with variable x, and y = 20 when x = 8.
    8·1 answer
  • Plzz help i cant figure this out..
    5·1 answer
  • SHOW WORK ILL MARK BRAINLIST !!!!
    13·1 answer
  • SOMEONE PLEASE HELP ME OUT BRO PLEASE Find the value of each variable. For each circle, the dot represents the center. DUED BY 1
    5·1 answer
  • A class of 80 girls and 60 boys sponsored a car
    10·2 answers
  • Is the equation Y=.125x a proportional relationship <br><br> Yes or no
    5·2 answers
  • Niall hikes 250.6 meters up a mountain. If he is 70% of the way up, how many meters tall is the mountain?
    5·1 answer
  • Damian types 110;words in 5 minutes Howard types 208 words in 8 minutes
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!