Answer:
P= Rs 60000
A= Rs 79860
T=1 & 1/2 year = 3/2 years
= 3/2 x 2 = 3 half years
R= ?
Applying the formula A= P (1+r/100)^T
79860 = 60000 (1+ r/100)^3
79860/60000 = (1+r/100)^3
1331/1000 = (1+r/100)^3
root(3)(1331/1000) = (1+r/100)
11/10 = 1+r/100
11/10 -1 = r/100
1/10 = r/100
r= 10 %
Step-by-step explanation:
It should go like this:
(4z + 3) (3z - 4) / (3z - 4) (z + 2)
Then you just cancel out (3z -4) and (3z -4), and the final simplified form of this polynomial is:
(4z +3) / (z + 2)
Answer:
x = 6
Step-by-step explanation:
We have to make the bottom eqivilent to the top.
10 + 30 = 40
5 x 6 = 30
10 + 30 = 40
Answer:
y=-2x + 8 which is the required equation
Which is option C
Step-by-step explanation:
Given:
Slope = m = -2
Given points are ( -2,12)
Which is
x = -2 and y =12
TO find:
Equation of line passing through these points = ?
Solution:
The point slope form of a line is
y = mx + c
Here we don't know the value of c
To find it
Putting y = 12 , x= -2 and y = -2 in the given equation
y = mx + c
Putting values it becomes
12 = (-2)*(-2) + c
12 = 4 + c
Subtracting 4 from both sides
12-4 = 4 -4 + c
8 = c
Now we have
m = -2 and c= 8
So equation of a line is given by
y = mx + c
Putting value of m and c
y = -2*x + 8
y=-2x + 8 which is the required equation
<h2>x > 9</h2>
Step-by-step explanation:
<h3><em>-</em><em>5</em><em> </em><em>(</em><em>x</em><em>-</em><em>1</em><em>)</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>+</em><em> </em><em>5</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em><em> </em><em>-</em><em>5</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>5</em></h3><h3><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>5</em><em> </em><em>÷</em><em> </em><em>-</em><em>5</em></h3><h3><em>x</em><em> </em><em>></em><em> </em><em>9</em></h3>
<h2>MARK ME AS BRAINLIST</h2><h2>PLZ FOLLOW ME</h2>