The molar mass of the imaginary compound Z(AX₃)₂ is the sum of the molar mass of Z, A and X.
<h3>How do we calculate molar mass?</h3>
Molar mass of any compound will be calculated by adding the mass of each atoms present in that compound.
Given compound is Z(AX₃)₂, molar mass of the given compound will be calculated as:
Molar mass of Z(AX₃)₂ = Molar mass of Z + molar mass of 2(A) + molar mass of 6(X)
Hence molar mass of Z(AX₃)₂ is the sum of the masses of all atoms.
To know more about molar mass, visit the below link:
brainly.com/question/18983376
#SPJ1
I hate to tell you this but this isnt tinder hunny
Answer:
Mass = 16.4 g
Explanation:
Given data:
Mass of K = 8.50 g
Mass of KCl produced = ?
Solution:
Chemical equation:
2K + Cl₂ → 2KCl
Number of moles of K:
Number of moles = mass/ molar mass
Number of moles = 8.50 g/ 39 g/mol
Number of moles = 0.22 mol
Now we will compare the moles of potassium and potassium chloride.
K : KCl
2 : 2
0.22 : 0.22
Mass of KCl:
Mass = number of moles × molar mass
Mass = 0.22 mol × 74.55 g/mol
Mass = 16.4 g
Answer and Explanation:
The balanced chemical equations are as follows:
The chemical formula of oxalic is 
In the case when oxalic acts reacted with the water so here the oxalic acid eliminates one proton that leads to the development of mono acids
After that, the second step derives that when oxalic acid is in aqueous solution eliminates other proton so it represent the polyprotic acid
Now the chemical equations are as follows:
Elimination of one proton

Now the elimination of other proton
