(0,8) on the y axis and (8,0) on the x axis.
Hope this helps if so feel free to give me a brainliest!!!
Have a wonderful day :)
Answer:
so you have to find angles
Answer:
C. 1/3x + 5
Step-by-step explanation:
Plugging in the values for x, we get:
y = 1/3(0) + 5 = 5
y = 1/3(6) + 5 = 7
y = 1/3(12) + 5 = 9
y = 1/3(15) + 5 = 10
I almost broke my neck trying to read this problem. :(
Answer:
Step-by-step explanation:
a.
first number is 1000-1+9=1008
9)1000(1
9
-------
10
9
-----
10
9
----
1
----
last number is 9999
9| 9999
---------
1111 |0
--------
9999=1008+(n-1)9
9999-1008=(n-1)9
n-1=8991/9=999
n=999+1=1000
b.
first digit=1000
last digit=9999-1=9998
2 |9999
---------
|4999|1
9998=1000+(n-1)2
(n-1)2=9998-1000=8998
n-1=4499
n=4499=1=5000
c.not sure
d.
total numbers=9000
9999=1000+(n-1)1
9999-1000=n-1
n=8999+1=9000
numbers divisible by 3=3000
first number=1002
last number=9999
9999=1002+(n-1)3
(n-1)3=9999-1002=8997
n-1=2999
n=2999+1=3000
numbers not divisible by 3=9000-3000=6000
e.
numbers divisible by 5=1800
first number=1000
last number=9995
9995=1000+(n-1)5
(n-1)5=9995-1000=8995
n-1=1799
n=1799+1=1800
numbers divisible by 7=1286
7 | 1000
---------
| 142-6
1000-6+7=1001
7 | 9999
|---------
1428-3
9999-3=9996
first digit=1001
last digit=9996
9996=1001+(n-1)7
(n-1)7=9996-1001=8995
n-1=1285
n=1285+1=1286
numbers divisible by 35=257
first digit=1015
35 ) 1000 ( 28
70
----
300
280
------
20
---
1000-20+35=1015
35)9999(285
70
----
299
280
-----
199
175
----
24
----
last digit=9999-24=9975
9975=1015+(n-1)35
(n-1)35=9975-1015=8960
n-1=8960/35=256
n=257
reqd. numbers=1800+1286-257=3019
Answer:
The dimensions of the rectangle are length = 7cm and width = 6cm.
Step-by-step explanation:
In order to solve for the dimensions, you will need to set up two equations in order to solve for the missing variable. Given the information that the length is 5 cm less then twice it's width, using 'L' for length and 'w' for width we get the following equation: L = 2w - 5. Perimeter is the sum of all the sides, or in the case of a rectangle P = 2w + 2L. We can then use our expression for 'L' in our perimeter formula: 26 = 2w + 2(2w - 5). First, using the distributive property we get: 26 = 2w + 4w - 10. Next, we combine like terms: 26 = 6w - 10. Then, we use inverse operations to isolate the variable: 26 + 10 = 6w - 10 + 10 to get 36 = 6w, divide both sides by 6 to get w = 6. Lastly, plug in the value of 'w' to 'L': L = 2(6) - 5 or L = 7.