There is no picture of the bird.
There is no prescribed length of time it takes to photographically document a crime scene. The amount of time spent depends on the size and complication in the crime scene, how much there is to document and environmental factors like weather or danger to the investigative team. It can consist of thousands of photographs and hours of work.
Crime scene photography should not just focus on the obvious. The purpose of crime scene photography is to document what is there and where it is in relationship to the scene, whether it is obviously connected to the crime or not. For example, a photographer in Florida shot the inside of every cabinet and the refrigerator at a homicide scene in a home, just as a matter of procedure. It was later discovered that the victim had a receipt for a six-pack of beer, matching the beer shown in the photograph of the refrigerator. Relatives noted that the victim did not drink beer. Further investigation led the team to the convenience store where the beer was purchased and the surveillance tape showed the victim with an unknown person purchasing the beer. It turns out that the victim had picked up a hitchhiker, purchased beer for that person and come back to the house. The photograph of the refrigerator contents had created the link enabling the investigators to find the suspect.
Distance divided by time is <u>speed</u><u>.</u>
Explanation:
The distance you travel in a certain amount of time would be your speed.
Answer:
Answer is C. Bacteria
Certain types of bacteria have a relationship with certain plants where they help convert nitrogen into a usable form.
Explanation:
Nitrogen is abundant in the atmosphere, but plants cannot use it because of the absence of a necessary enzyme, nitrogenase, which converts nitrogen into a usable form. So they form a symbiotic relationship (mutually-beneficial arrangement) with nitrogen fixing soil bacteria (rhizobia) which perform biological nitrogen fixation. Biological nitrogen fixation is a process in which the symbiotic nitrogen-fixing bacteria coverts atmospheric nitrogen into ammonia and organic derivatives that plants can use to synthesize proteins. This bacteria form nodules on the roots of plants like legumes in which nitrogen fixation takes place.
Both plants and bacteria benefit from this symbiotic relationship, as the plant obtains ammonia to synthesize proteins from nitrogen in the atmosphere while bacteria obtain carbon compounds from the plant produced through photosynthesis and a secure environment to grow. As the plant roots leave behind some of the usable form of nitrogen in the soil, this process also increase soil fertility.
q=0,78
To calculate the frequency of the allele we use the Hardy-Weinberg equation. The Hardy-Weinberg equation is used to calculate the genetic variation of a population at equilibrium. If the alleles are A and a, p is the frequency of the allele A and q is the frequency of the allele a. Hardy-Weinberg equation for alleles A and a:
p² + 2pq + q² = 1
p² is the frequency of the homozygous genotype AA, 2pq is the frequency of the heterozygous genotype Aa and q² is the frequency of the homozygous genotype aa.
p²+2pq+q²=(p+q)²=1
p+q=1
<span>If p=0,22 q=1-0,22=0,78</span>